This application note describes how the PM 6681 timer/counter together with TimeView PC-based analysis software can be used for quantifying the jitter in a digital system. The example used here is that of a portable CD player.

Background

The Compact Disc (CD) contains digitally stored information of audio, video or computer data. The digital signals are physically stored in a spiral track with a length of several kilometers. This data is stored as a pattern of “pits” (cavities) and “lands” (the area between pits) in the CD surface. The length of the pits and lands are detected by an optical pick-up and transformed to “digital symbols” which are used to reconstruct the audio signal. Because of data density and quality requirements, the data on the disc is recorded with a very high precision. The width of the cavities (pits) are only about 0.6 µm and the depth is about 0.12 µm. Nine different symbols called T3...T9 are used, both for pits and for lands (see Figure 1). Each symbol is represented by an electrical pulse having a width of 3...11 clock periods.

The importance of low jitter

The overall quality of the CD system is based on, amongst others, the amount of jitter in the system. The jitter could be caused by a bad recording or by the CD-player. If the jitter is too large, the CD-player can’t separate the various symbols, and the result will be a bad sound or wrong data interpretation in a CD-ROM system.

To maintain system quality, measurement of jitter of a selected symbol width is made at various stages in the production process. It is also important to verify jitter levels after repair of a CD-player. Measurement of jitter is however not an easy task. For fast high performance measurement and analysis, expensive and complicated measuring systems are normally required.

Normal high resolution timer counters, even though they include statistic functions, cannot measure these
signals, since the symbol of interest must be extracted from the eight others by some sort of “window” technique.

Measurement setup

For correct measurements on digital signals in a CD player, the signal to be measured must be tapped early in the signal path, where it has not yet been frequency compensated (see Figure 2).

![Digital signal tapping](image)

Figure 2

Digital signal tapping

This was accomplished by tapping the signal early in the HF-pre-amplifier, where the output signal is a series of pulses with basically 9 different pulse widths. TimeView will show the amount of jitter present on the pulses. In other words, we will measure the Pulse Width Jitter.

In TimeView the measuring function was set to **Pos. Pulse Width**. **Measuring Time** was set to minimum (80 ns) and **SINGLE** was **ON**. The data capture via TimeView is made by **Free-Run, Single-Block**, capture. The number of samples was set to somewhat less than 4000. The number of samples in itself is not critical, but it’s important to note that for highest TimeView capture speed in pulse width measurements, the sample size should be maximum 4466.

Data capture showing pulse width data vs time

The screen in Figure 3 shows how the pulse width varies over time. The data is more or less a random pattern that is very difficult to interpret in a meaningful way.

![Pulse widths measured](image)

Figure 3

The pulse widths measured during the first 100 ms shows a random pattern, and is difficult to interpret.

However, by using the statistical function we can easily analyze the data. The distribution histogram of the pulse widths measured is shown in Figure 4.

![Distribution of pulse widths](image)

Figure 4

The distribution of the width of the 9 different CD symbols (T3...T11).

Statistical analysis quantifies jitter

Figure 4 shows the statistical distribution of the width of the 9 different symbols (T3...T11) on a CD, representing the nine different pit lengths. In quality control and after repair it is of interest to analyze each of these clusters. In production testing, usually only the first population T3 is analyzed.

![Jitter distribution](image)

Figure 5

The distribution of the width of the first symbol (T3).

Other measurement capabilities

In addition to jitter analysis of the electrical "digital symbols" generated by the CD player, the PM 6681 and TimeView can also be used to analyze the analog output signal from the CD player. This additional analysis includes frequency stability analysis, and detection of unwanted line voltage modulation (50/60 Hz) present in the system clock.

The PM6681 in combination with TimeView software provides a powerful solution to many other measurement requirements in the frequency domain as well.