
 ®

Remote Control
For NORMA 4000/5000 Power Analyzer

Users Guide

June 2007
© 2007 Fluke Corporation, All rights reserved.
All product names are trademarks of their respective companies.

LIMITED WARRANTY AND LIMITATION OF LIABILITY
BY USING THIS SOFTWARE PRODUCT IN ANY MANNER, YOU ARE AGREEING TO ACCEPT THE
FOLLOWING TERMS AND CONDITIONS.

Fluke Corporation (Fluke) grants you a non-exclusive right to use Fluke NORMA View software (Product) on
a single PC or on multiple PCs. This grant of license does not include the right to copy, modify, rent, lease,
sell, transfer or distribute the Product or any portion thereof. You may not reverse engineer, decompile, or
disassemble the Product.

Fluke warrants that the Product will perform in its intended environment substantially in accordance with the
accompanying written materials for a period of 90 days from the date of license acceptance. Fluke does not
warrant any downloading errors or that the Product will be error free or operate without interruption.

FLUKE DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE AND THE ACCOMPANYING WRITTEN MATERIALS. In no event shall
Fluke be liable for any damages whatsoever (including, without limitation, indirect, consequential, or
incidental damages, damages for loss of business profits, business interruption, loss of business
information, or other pecuniary loss) arising out of the use of or inability to use this Product, even if Fluke
has been advised of the possibility of such damages.

Fluke Corporation
P.O. Box 9090
Everett, WA 98206-9090
U.S.A.

Fluke Europe B.V.
P.O. Box 1186
5602 BD Eindhoven
The Netherlands

11/2001

To register your product online, visit register.fluke.com

http://register.fluke.com

 i

Table of Contents

Chapter Title Page

1 Remote Control Basics... 1-1

Introduction.. 1-3
Getting Started ... 1-3

Assumptions .. 1-3
Procedure... 1-3

Switchover to Remote Control... 1-4
Indications during Remote Control.. 1-4
Return to Manual Operation .. 1-5

Manually.. 1-5
Remotely ... 1-5

Commands and Instrument Responses .. 1-5
Commands... 1-5
Device Responses.. 1-6

Structure and Syntax of Device Messages... 1-6
Introduction to SCPI.. 1-6
Structure of Commands... 1-6
Common Commands ... 1-6
Device-Specific Commands .. 1-6

Hierarchy... 1-6
Optional Key Word ... 1-7
Long and Short Form .. 1-8
Parameters ... 1-8
Numerical Suffix... 1-8

Structure of Command Lines... 1-8
Responses to Queries... 1-9
Parameters ... 1-10

Numerical values... 1-10
Boolean Parameters... 1-10
Text ... 1-10
Strings ... 1-11
Block data ... 1-11

Overview of Syntax Elements ... 1-11
Instrument Model and Command Processing .. 1-11

Input Unit .. 1-12
Command Recognition.. 1-12

Remote Control
Users Guide

 ii

Data Set and Instrument Hardware.. 1-13
Status Reporting System.. 1-13
Output Unit.. 1-13
Command Sequence and Command Synchronization................................... 1-14

2 Status Reporting System.. 2-1
Introduction.. 2-3
Structure of an SCPI Status Register ... 2-3
Overview of the Status Registers ... 2-5
Description of Status Registers.. 2-6

Status Byte (STB) and Service Request Enable Register (SRE) 2-6
Event Status Register (ESR) and Event Status Enable Register (ESE)......... 2-7

Application of the Status Reporting System.. 2-10
Service Request, Making Use of the Hierarchy Structure (GPIB only) 2-10
Serial Poll (GPIB only) ... 2-11
Query by Means of Commands ... 2-11
Error-Queue Query.. 2-11
Resetting Values of the Status Reporting System ... 2-11

3 Hardware Interfaces .. 3-1
Introduction.. 3-3
IEC/IEEE-Bus Interface (GPIB) - optional ... 3-3

Characteristics of Interface.. 3-3
Bus Lines ... 3-3
Interface Functions .. 3-5
Interface Messages .. 3-5
Universal Commands .. 3-5
Addressed Commands ... 3-6

RS-232-C Interface .. 3-6
Characteristics of Interface.. 3-6
Signal Lines ... 3-7
Transmission Parameters... 3-8
Interface Functions .. 3-8
Handshake ... 3-8

IEEE 802.3 (Ethernet) – Optional.. 3-9
Characteristics of Interface.. 3-9
Signal Lines ... 3-10
Connection Settings... 3-11

Universal Serial Bus (USB) - optional... 3-11
Characteristics of Interface.. 3-11
Connection Settings... 3-11

4 Remote Control - Description of Commands.................................... 4-1
Introduction.. 4-3
Common Commands ... 4-3
Measurement Functions... 4-5

<function> ... 4-5
ABORt Subsystem... 4-10

CALCulate Subsystem.. 4-11
DISPlay Subsystem... 4-24
FORMat Subsystem .. 4-25

Hardcopy Subsystem... 4-30
INITiate Subsystem... 4-31

 Contents (continued)

 iii

INPut Subsystem ... 4-32
OUTPut Subsystem... 4-36

ROUTe Subsystem .. 4-37
SENSe Subsystem ... 4-38
SENSe2 Subsystem (Option Process Interface) .. 4-53
SOURce Subsystem (Option Process Interface) ... 4-64
SYNC Subsystem .. 4-67
TRIGger Subsystem .. 4-81
SYSTem Subsystem .. 4-86
STATus Subsystem ... 4-92

List of Commands Grouped By Subsystems ... 4-105

5 Error Messages ... 5-1
Introduction.. 5-3
Command Error ... 5-3
Execution Error.. 5-5
Device-Specific Error .. 5-6
Query Error .. 5-7

6 Programming Examples ... 6-1
Introduction.. 6-3
Initialize Interface .. 6-3
Initialize Instrument ... 6-5
Perform Simple Power Measurement .. 6-6
U, I, P Measurement .. 6-9
Continuous Power Measurement ... 6-11
U, I, P Measurement over Ethernet Interface without VISA Library 6-14
U, I, P Measurement over RS-232 Interface without VISA Library 6-19
U, I, P Measurement over USB (RS-232) Interface without VISA Library 6-26

Remote Control
Users Guide

 iv

 v

List of Tables

Table Title Page

1-1. Synchronization by means of *OPC, *OPC? and *WAI 1-14
2-1. Meaning of the Bits Used in the Status Byte.. 2-6
2-2. Meaning of the Bits Used in the Event Status Register ... 2-7
2-3. Meaning of the Bits in the STATus.OPERation Register 2-8
2-4. Meaning of Bits in STATus:QUEStionable Register... 2-9
2-5. Meaning of Bits in STATus:QUEStionable:CURRent Register............................ 2-9
2-6. Meaning of Bits in STATus:QUEStionable:VOLTage Register 2-10
2-7. Resettting Instrument Functions... 2-12
3-1. Interface Functions... 3-5
3-2. Universal Commands ... 3-5
3-3. Addressed Commands.. 3-6
3-4. Control Characters for RS-232-C Interface.. 3-8

Remote Control
Users Guide

 vi

 vii

List of Figures

Figure Title Page

1-1. Figure 1-1 Tree structure of SCPI Command Cystems Using the INPut system
 as an Example. ... 1-7
1-2. Device Model for Remote Control via the Remote Control Interface. 1-12
2-1. Status Register Model .. 2-3
2-2. Minimum Structure Reporting Structure Required by SCPI.................................. 2-5
3-1. Pin Assignment of IEC/IEEE-Bus Interface .. 3-3
3-2. Pin Assignment of RS-232-C Interface.. 3-7
3-3. Wiring of Data, Control and Signalling Lines for Hardware Handshake 3-9
3-4. Pin Assignment of IEEE 802.3 (Ethernet) Interface (RJ-45 Connector) 3-10
3-5. IEEE 802.3 (Ethernet) Wiring of Signalling Lines .. 3-10
3-6. Pin Assignment of USB Interface (Series .. 3-11

Remote Control
Users Guide

 viii

 1-1

Chapter 1
Remote Control Basics

 Title Page

Introduction.. 1-3
Getting Started ... 1-3

Assumptions .. 1-3
Procedure... 1-3

Switchover to Remote Control... 1-4
Indications during Remote Control.. 1-4
Return to Manual Operation .. 1-5

Manually.. 1-5
Remotely ... 1-5

Commands and Instrument Responses .. 1-5
Commands... 1-5
Device Responses.. 1-6

Structure and Syntax of Device Messages... 1-6
Introduction to SCPI.. 1-6
Structure of Commands... 1-6
Common Commands ... 1-6
Device-Specific Commands .. 1-6

Hierarchy... 1-6
Optional Key Word ... 1-7
Long and Short Form .. 1-8
Parameters ... 1-8
Numerical Suffix... 1-8

Structure of Command Lines... 1-8
Responses to Queries... 1-9
Parameters ... 1-10

Numerical values... 1-10
Boolean Parameters... 1-10
Text ... 1-10
Strings ... 1-11
Block data ... 1-11

Overview of Syntax Elements ... 1-11
Instrument Model and Command Processing .. 1-11

Input Unit .. 1-12
Command Recognition.. 1-12
Data Set and Instrument Hardware.. 1-13

Remote Control
Users Guide

1-2

Status Reporting System.. 1-13
Output Unit.. 1-13
Command Sequence and Command Synchronization................................... 1-14

 Remote Control Basics
 Introduction 1

 1-3

Introduction
This chapter provides basic information on remote control, for example on the RS 232-C
interface, IEC/IEEE bus, interface and device messages, command processing, status
reporting system, etc. The instrument is equipped with RS-232-C interface and optionally
with an IEC/IEEE-bus interface according to standard IEC 625.1/IEEE 488.1. The
connectors are located at the rear of the instrument and permit to connect a controller for
remote control. The instrument supports the SCPI version 1999.0 (Standard Commands
for Programmable Instruments). The SCPI standard is based on standard IEEE 488.2 and
aims at the standardization of device-specific commands, error handling and the status
registers.
For this section it is assumed that the user has basic knowledge of IEC/IEEE-bus
programming and operation of the controller. A description of the interface commands
will be found in the relevant manuals.
The requirements of the SCPI standard regarding command syntax, error handling and
configuration of the status registers are explained in detail in the respective sections.
Tables provide a fast overview of the bit assignment of the status registers. The tables are
complemented by a comprehensive description of the status registers. A description of
commands is given in this manual as well as programming examples for the main
functions. The examples for IEC bus programming are all written using VISA C API.

Getting Started
The short and simple operating sequence given below permits fast putting into operation
of the instrument and setting of its basic functions.

Assumptions
• Instrument will be connected to the port COM1 of the controlling computer.

Default factory settings: Baud Rate = 115200, Data Bits = 8, Stop Bits = 1, Parity
= None, Handshake = RTS/CTS.

• HyperTerminal program will be used to communicate with the instrument.

Procedure
1. Connect the instrument and the controlling computer.
2. Run HyperTerminal program on the controlling computer (Start > Programs >

Accessories > Communication > HyperTerminal). HyperTerminal is a standard
part of Windows operating system.

3. If you have never used/configured your HyperTerminal before:
• In the displayed window Connection Description type into Name: Fluke

and press OK.
• In the next displayed window Connect To select in Conect using: COM1

(or other if you use other com port) and press OK.
• In the next displayed window COM1 Properties set the right properties

o Bits per second = 115200
o Data bits = 8
o Parity = None
o Stop bits = 1

Remote Control
Users Guide

1-4

o Flow control = None
and press OK.

4. Go to File > Properties > Settings > ASCII Setup and check the following items:
• Send line ends with line feeds
• Echo typed characters locally
• Append line feeds to incoming line ends
and press OK twice.

5. In the main (white) window, type *IDN? and press Enter. (Do not make a
mistake while typing, since all characters you type are immediatelly sent to
instrument when you press a key on keyboard, i.e. backspace will not erase
mistyped characters. If you make a mistake while typing, press Enter several
times. This will get things back in order).

6. The instrument will return the identification string, for example:
 Fluke,NORMA4000,KN34512BA,01.00
7. In the main (white) window, type DATA? “POW” and press Enter. This will

instruct the instrument to return last valid power measurement.
8. The instrument will return last valid power measurement, for example:
 +1.23456E+02

Switchover to Remote Control
On power-up, the instrument is always in the manual control mode ("LOCAL" state) and
can be operated via the front panel.
The instrument is switched to remote control ("REMOTE" state) as follows:
IEC/IEEE-bus: when it receives an addressed command from the controller with REN

line set.
Other interfaces: when it receives a valid command terminated by line feed <LF>

(=0Ah) from the controller in „SYSTem:KLOCk REM“ state or by
this command explicitly.

During remote control, operation via the front panel is disabled. The instrument remains
in the remote state until it is reset to the manual state via the front panel or via the remote
control. Switching from manual to remote control and vice versa does not affect the
instrument settings.

Indications during Remote Control
The remote control state is indicated by two-way radio icon in the leftmost cell of the
status line on the instrument’s screen. A key icon in the 3rd cell of the status line
indicates that the [LOCAL] key (F6/Esc) is disabled, i.e. switchover to manual control
can only be made via the remote control. If the key icon is not displayed, switchover to
manual control can be made with the [LOCAL] (F6/Esc) key.

 Remote Control Basics
 Return to Manual Operation 1

 1-5

Return to Manual Operation
Return to manual operation can be made via the front panel or the IEC/IEEE bus.

Manually
Press [LOCAL] key

Note
• Before switchover, command processing must be completed as

otherwise switchover to remote control is effected immediately.
• The [LOCAL] key can be disabled either by command

SYSTem:KLOCk ON or universal command LLO (GPIB only) in order
to prevent unintentional switchover. In this case, switchover to
manual control is only possible via remote control.

• The [LOCAL] key can be enabled again either by command
SYSTem:KLOCk OFF or by deactivating the REN control line (GPIB
only).

Remotely
GTL interface message (GPIB only)
Using SYSTem:KLOCk OFF command

Commands and Instrument Responses
Instrument commands are transferred by the selected interface. With the exception of
some device responses (binary data), ASCII code is used. On IEC/IEEE bus (GPIB) the
commands and instrument responses are referred to as device messages. The commands
and instrument responses are largely identical for all interface types. A distinction is
made according to the direction in which device messages are sent on the interface.

Commands
Commands are messages the controller sends to the instrument. They operate the device
functions and request information. Commands are subdivided according to two criteria:

1. According to the effect they have on the instrument.
• Setting commands cause instrument settings such as reset of the instrument

or setting the output level to 1 V.
• Queries cause data to be provided for output (queries) on the interface, eg for

device identification or polling of the active input.
2. According to their definition in standard IEEE 488.2.

• Common Commands are exactly defined as to their function and notation in
standard IEEE 488.2. They refer to functions such as the management of the
standardized status registers, reset and selftest.

• Device-specific commands refer to functions depending on the features of
the instrument such as frequency setting. A majority of these commands has
also been standardized by the SCPI committee.

Remote Control
Users Guide

1-6

Device Responses
Device responses are messages the instruments sends to the controller in reply to a query.
They may contain measurement results or information on the instrument status.
The structure and syntax of device messages are described in the following section.

Structure and Syntax of Device Messages

Introduction to SCPI
SCPI (Standard Commands for Programmable Instruments) describes a standard
command set for programming instruments, irrespective of the type of instrument or
manufacturer. The objective of the SCPI consortium is to standardize the device-specific
commands to a large extent. For this purpose, a model was developed which defines
identical functions of a device or of different devices. Command systems were generated
which are assigned to these functions. Thus it is possible to address identical functions
with identical commands. The command systems are of a hierarchical structure. Fig. 1-1
illustrates this tree structure using a section of command system SOURce, which operates
the signal sources of the devices. The other examples concerning syntax and structure of
the commands are derived from this command system.
SCPI is based on standard IEEE 488.2, ie it uses the same basic syntax elements as well
as the common commands defined in this standard. Part of the syntax of the device
responses is defined in greater detail than in standard IEEE 488.2 (see section "Responses
to Queries").

Structure of Commands
The Commands consist of a header and, in most cases, one or several parameters. The
header and the parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32
decimal, eg a blank). Headers may consist of several key words. Queries are formed by
appending a question mark directly to the header.

Common Commands
Common (device-independent) commands consist of a header preceded by an asterisk "*"
and of one or several parameters, if any.

Examples

*RST RESET, resets the instrument
*ESE 253 EVENT STATUS ENABLE, sets the bits of the event status enable register
*ESR? EVENT STATUS QUERY, queries the contents of the event status register

Device-Specific Commands

Hierarchy
Device-specific commands are of a hierarchical structure (see Fig. 1-1). The different
levels are represented by combined headers. Headers of the highest level (root level) have
only one key word. This key word denotes a complete command system.

 Remote Control Basics
 Structure and Syntax of Device Messages 1

 1-7

Example
:SYSTem

This key word denotes the :SYSTem command system. For commands of lower levels, the
complete path has to be specified, starting on the left with the highest level, the individual key
words being separated by a colon ":".

Example
INPut:COUPling AC
This command is at the second level of the INPut subsystem, see Figure 1-1. It selects
AC coupling of the input channel.

INPut

COUPling GAIN SHUNt

STATeLPASs

FREQuency

STATe

FILter

eya001.eps

Figure 1-1. Tree Structure of SCPI Command Systems Using the INPut System as an Example

Optional Key Word
Some command systems permit certain key words to be optionally inserted into the
header or omitted. These key words are marked in the description by square brackets. The
instrument must recognize the full command length for reasons of compatibility with the
SCPI standard. Some commands can be considerably shortened by omitting optional key
words.

Example
INPut:FILTer[:STATe] ON
This command enables the antialiasing filter to be inserted into the signal path before it is
processed by SENSe subsystem. The following command has the same effect:
INPut:FILTer ON

Note
An optional key word must not be omitted if its effect is specified in greater
detail by means of a numerical suffix.

Remote Control
Users Guide

1-8

Long and Short Form

Example
STATus:QUEStionable:ENABle 1
STAT:QUES:ENAB 1

Note:
The short form is characterized by upper-case letters, the long form
corresponds to the complete word. Upper-case and lower-case notation
only serve the above purpose, the device itself does not make any difference
between upper-case and lower-case letters.

Parameters
A parameter must be separated from the header by a "white space". If a command
includes several parameters, they are separated by a comma ",".

Example
FORMat:READings:DATA REAL,32
This commands selects the binary 32-bit floating-point data format for data transfers.

Numerical Suffix
If a device has several functions or features of the same kind, eg inputs, the desired
function can be selected by appending a suffix to the Command.
Entries without suffix are interpreted like entries with the suffix 1 unless explicitly stated
otherwise.

Example
INPut:COUPling DC
This command sets the input coupling on channel 1 to DC.
Measurement functions (parameters to command SENSe:FUNCtion) use numeric suffix
to select the phase. If no suffix is specified, total value is configured.

Structure of Command Lines
A command line may contain one or several commands. It is terminated by <New Line>,
<New Line> with EOI or EOI together with the last data byte (EOI applies only to GPIB
interface). VISA automatically produces EOI together with the last data byte. Several
commands in a command line are separated by a semicolon ";". If the next command
belongs to a different command system, the semicolon is followed by a colon.

Example
INPut1:COUPling DC;:SENSe:CURRent1:DC:RANGe 1.0
This command line contains two commands. The first command belongs to the INPut
subsystem and sets the input coupling of channel 1. The second command belongs to the
SENSe subsystem and sets the current range on phase 1 to 1.0 A. (DC could be omitted
as this is an optional keyword. For this instrument there is no difference between AC and
DC range and both will set the same range.)

 Remote Control Basics
 Structure and Syntax of Device Messages 1

 1-9

If the successive commands belong to the same system and thus have one or several
levels in common, the command line can be abbreviated. To this end, the second
command (after the semicolon) is started with the level that lies below the common levels
(see also Fig. 1-1). The colon following the semicolon must be omitted in this case.

Example
INPut1:SHUNt EXTernal;:INPut1:GAIN 25.0
This command line is represented in its full length and contains two commands separated
from each other by the semicolon. The two commands belong to the INPut command
subsystem, ie they have one common level.
To abbreviate the command line, the second command is started with the level below
INPut. The colon after the semicolon is omitted.
The abbreviated form of the command line reads as follows:
INPut1:SHUNt EXTernal;GAIN 25.0
However, a new command line always has to be started with the complete path.

Example
INPut1:SHUNt EXTernal
INPut1:GAIN 25.0

Responses to Queries
For each setting command, a query is defined unless explicitly specified otherwise. The
query is formed by adding a question mark to the setting command in question.
Responses to queries to the SCPI standard are partly subject to stricter rules than
responses to the IEEE 488.2 standard.

1. The requested parameter is transmitted without header.

Example
INPut:COUPling?
Response: AC

2. Numerical values are output without a unit. Physical quantities are referred to the basic
units or to the units set with the Unit command.

Example
INPut:FILTer:LPASs:FREQuency?
Response: 3.0E5 for 300 kHz

3. Truth values (Boolean parameters) are returned as 0 (for Off) and 1 (for On).

Example
INPut:FILTer:STATe?
Response: 1

4. Text (character data) is returned in a short form.

Remote Control
Users Guide

1-10

Example
INPut:SHUNt?
Response: EXT

5. If there are multiple queries in the command line, the responses are returned in
the same order as the queries. The responses are separated by a semicolon.

Example
INPut:FILTer:STATe?;:INPut:FILTer:LPASs:FREQuency?
Response: 1;1.0E+04

Parameters
Most commands require a parameter to be specified. Parameters must be separated from
the header by a "white space". Permissible parameters are numerical values, Boolean
parameters, text, character strings and block data. The parameter type required for a given
command and the permissible range of values are specified in the command description.

Numerical values
Numerical values can be entered in any form, ie with sign, decimal point and exponent.
Values exceeding the resolution of the instrument are rounded up or down. The mantissa
may comprise up to 15 characters, the exponent must be in the value range -307 to 307.
The exponent is preceded by an "E" or "e". Specifying the exponent alone is not
permissible. In the case of physical quantities that have a unit, no unit is accepted, the
basic unit is used.

Example
SENSe:VOLTage1:RANGe 1000.0 sets range of 1000 V

Boolean Parameters
Boolean parameters represent two states. The ON state (logically true) is represented by
ON or a numerical value unequal to 0. The OFF state (logically untrue) is represented by
OFF or the numerical value 0. In the case of a query, 0 or 1 is returned.

Example
Setting command: SYNC:STATe ON
Query: SYNC:STATe?

Response: 1

Text
Text parameters follow the syntactic rules for key words, ie they can be entered using a
short or a long form. Like any other parameter, they must be separated from the header
by a "white space". In the case of a query, the short form of the text is returned.

Example
Setting command: INPut1:SHUNt EXTernal
Query: INPut1:SHUNt?

Response: EXT

 Remote Control Basics
 Instrument Model and Command Processing 1

 1-11

Strings
Strings must always be entered in inverted commas (’ or ").

Example
ROUTe:SYSTem "3W"
ROUTe:SYSTem ’3W’

Block data
Block data are a transmission format which is suitable for the transmission of large
amounts of data from the instrument to the controller. The block data have the following
structure:

Example
#40008xxxxxxxx
The data block is preceded by the ASCII character #. The next number indicates how
many of the following digits describe the length of the data block. In the example, the
four following digits indicate the length to be 8 bytes (skipping the leading zeros). This is
followed by the data bytes. During the transmission of the data bytes, all End or other
control signs are ignored until all bytes are transmitted. Data elements comprising more
than one byte are transmitted with the byte being the first which was specified by the
SCPI command "FORMat:BORDer". Internal structure of the data in the block depends
on the actual instrument configuration.

Overview of Syntax Elements
Following is an overview of syntax elements:
: The colon separates the key words of a command. In a command line the

separating semicolon marks the uppermost command level.
; The semicolon separates two commands of a command line. It does not alter the

path.
, The comma separates several parameters of a command.
? The question mark forms a query.
* The asterix marks a common command.
" Quotation marks introduce a string and terminate it.
ASCI character # introduces block data.
 A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates

header and parameter.

Instrument Model and Command Processing
The instrument model shown in Figure 1-2 was created with a view to the processing of
the interface commands. The individual components work independently of each other
and simultaneously. They communicate with each other by means of messages.

Remote Control
Users Guide

1-12

Interface

Interface

Input unit
with

input buffer

Output unit
with

output buffer

Data set

Instrument
hardware

Status reporting
system

Command
recognition

eya002.eps

Figure 1-2. Device Model for Remote Control via the Remote Control Interface

Input Unit
The input unit receives commands character by character from the interface and stores
them in the input buffer. The input buffer has a size of 2048 characters. The input unit
sends a message to the command recognition when the input buffer is full or when it
receives a terminator, <PROGRAM MESSAGE TERMINATOR>, as defined in IEEE
488.2, or the interface message DCL (GPIB only).
If the input buffer is full, the interface traffic is stopped and the data received up to then
are processed. After this, the interface traffic is continued. If, on receipt of a terminator,
the input buffer is not full, the input unit can receive the next command during command
recognition and execution. Receipt of a DCL (GPIB only) command clears the input
buffer and immediately initiates a message to the command recognition.

Command Recognition
The command recognition analyzes the data from the input unit in the order the data are
received. Only DCL (GPIB only) commands are serviced with priority, whereas GET
commands (Group Execute Trigger, GPIB only), for example, are processed only after
the previously received commands. Each recognized command is immediately transferred
to the data set but without being executed there at once.

 Remote Control Basics
 Instrument Model and Command Processing 1

 1-13

Syntactic errors in commands are detected here and transferred to the status reporting
system. The rest of a command line following a syntax error is further analyzed and
processed as far as possible.
If the command recognition recognizes a terminator or a DCL (GPIB only) command, it
requests the data set to set the commands now also in the instrument hardware. After this,
it is immediately ready to continue processing commands. This means that new
commands can be processed while the hardware is being set ("overlapping execution").
Currently all commands sent to the instrument are executed non overlapped
(=sequential).

Data Set and Instrument Hardware
The term "instrument hardware" is used here to designate the part of the instrument
which actually performs the instrument functions: signal generation, measurement, etc.
The controller is not included.
The data set is a detailed reproduction of the instrument hardware in the software.
Interface setting commands cause an alteration of the data set. The data set management
enters the new values (eg frequency) into the data set but passes them on to the hardware
only upon request by the command recognition. As this is only effected at the end of a
command line, the sequence of setting commands in the command line is not relevant.
The data are only checked for compatibility among one another and with the instrument
hardware immediately before they are transferred to the instrument hardware. If it is
found that an execution is not possible, an "execution error" is signalled to the status
reporting system. All alterations mad to the data set are cancelled, and the instrument
hardware is not reset. Due to the delayed checking and hardware setting it is permissible
however that impermissible instrument states are briefly set within a command line
without an error message being produced. At the end of the command line, however, a
permissible instrument state must be attained.
Before the data are passed on to the hardware, the settling bit in the STATus:OPERation
register is set. The hardware makes the settings and resets the bit when the new state has
settled. This procedure can be used for synchronization of command processing.

Status Reporting System
The status reporting system collects information on the instrument state and makes it
available to the output unit upon request. A detailed description of the structure and
function is given in section Status Reporting System.

Output Unit
The output unit collects the information requested by the controller and output by the data
set management. The output unit processes the information in accordance with the SCPI
rules and makes it available in the output buffer. The output buffer has a size of 2048
characters. If the requested information exceeds this size, it is made available in portions
without this being recognized by the controller.
If the instrument is addressed as a talker without the output buffer containing data or
awaiting data from the data set management, the output unit returns the error message
"Query UNTERMINATED" to the status reporting system. No data are sent on the
interface. The controller waits until it has reached its time limit. This procedure is
specified by SCPI.
Interface queries cause the data set management to send the desired data to the output
unit.

Remote Control
Users Guide

1-14

Command Sequence and Command Synchronization
As mentioned above, overlapping execution is possible for all commands. Likewise, the
setting commands of a command line are not necessarily processed in the order in which
they are received. To ensure that commands are carried out in a specific order, each
command must be sent in a separate command line, ie with a separate viWrite (viPrintf,
viQueryf) call.
To prevent overlapping execution of commands, one of commands *OPC, *OPC? or
*WAI has to be used. Each of the three commands causes a certain action to be triggered
only after the hardware has been set and has settled. The controller can be programmed to
wait for the respective action to occur (see the following table).

Table 1-1. Synchronization by Means of *OPC, *OPC? and *WAI

Command Action after the hardware has settled Programming of controller

*OPC Sets the operation-complete bits in the ESR - Setting of bit 0 in the ESE

- Setting of bit 5 in the SRE

- Waiting for a service request
(SRQ)

*OPC? Writes a "1" into the output buffer Addressing of instrument as a
talker

*WAI Continues the IEC/IEEE-bus handshake.

The handshake is not stopped.

Sending of next command

An example of command synchronization will be found in section Programming
Examples.
Command synchronization commands will work but are currently not needed (sequential
execution).

 2-1

Chapter 2
Status Reporting System

 Title Page

Introduction.. 2-3
Structure of an SCPI Status Register ... 2-3
Overview of the Status Registers ... 2-5
Description of Status Registers.. 2-6

Status Byte (STB) and Service Request Enable Register (SRE) 2-6
Event Status Register (ESR) and Event Status Enable Register (ESE)......... 2-7

Application of the Status Reporting System.. 2-10
Service Request, Making Use of the Hierarchy Structure (GPIB only) 2-10
Serial Poll (GPIB only) ... 2-11
Query by Means of Commands ... 2-11
Error-Queue Query.. 2-11
Resetting Values of the Status Reporting System ... 2-11

Remote Control
Users Guide

2-2

 Status Reporting System
 Introduction 2

 2-3

Introduction
The status reporting system stores all information on the current operating state of the
instrument, for example on any errors that have occurred. This information is stored in
status registers and in an error queue. The status registers and the error queue can be
queried via the IEC/IEEE bus. The information is of a hierarchical structure. The highest
level is formed by the status byte (STB) register defined in IEEE 488.2 and the associated
service request enable (SRE) mask register. The STB register receives information from
the standard event status register (ESR) which is also defined in IEEE 488.2 with the
associated standard event status enable (ESE) mask register, and from the registers
STATus:OPERation and STATus:QUEStionable which are defined by SCPI and contain
detailed information on the instrument.
The output buffer contains the messages the instrument returns to the controller. The output buffer
is not part of the status reporting system but determines the value of the MAV bit in the STB
register and is therefore shown in Fig. 5-4.

Structure of an SCPI Status Register
Each SCPI register consists of five parts each of 16 bits width which have different
functions (see Figure 2-1). The individual bits are independent of each other, ie each
hardware status is assigned a bit number which is valid for all five parts. For example, bit
3 of the STATus:OPERation register is assigned to the hardware status "Wait for trigger"
for all five parts. Bit 15 (the most significant bit) is set to zero for all five parts. This
allows the controller to process the contents of the register parts as positive integer.

15 14 13 12 3 2 1 0CONDition part

15 14 13 12 3 2 1 0

& & & & & & & & & & & & &

EVENt part

15 14 13 12 3 2 1 0ENABle part

To higher-order register

Sum bit+

15 14 13 12 3 2 1 0
15 14 13 12 3 2 1 0PTRansition part

NTRansition part

eya003.eps

Figure 2-1. Status Register Model

Remote Control
Users Guide

2-4

CONDition part The CONDition part is directly written to by the hardware or the sum

bit of the next lower register. Its contents reflects the current
instrument status. This register part can be read only but not written to
or cleared. Reading does not affect it contents.

PTRansition part The Positive Transition part acts as an edge detector. If a bit of the
CONDition part changes from 0 to 1, the status of the associated PTR bit
determines whether the EVENt bit is set to 1.

PTR bit = 1: the EVENt bit is set.

PTR bit = 0: the EVENt bit is not set.

This part can be written to and read. Reading does not affect its contents.
NTRansition part The Negative Transition part likewise acts as an edge detector. If a bit

of the CONDition part changes from 1 to 0, the status of the
associated NTR bit determines whether the EVENt bit is set to 1.
NTR bit = 1: the EVENt bit is set.
NTR bit = 0: the EVENt bit is not set.
This part can be written to and read. Reading does not affect its
contents.
With the above two edge register parts, the user can define what status
transition of the CONDition part (none, 0 to 1, 1 to 0 or both) is to be
stored in the EVENt part.

EVENt part The EVENt part indicates whether an event has occurred since it was
read the last time; it is the "memory" of the CONDition part. It
indicates only those events that were passed on by the edge filters. The
EVENt part is continuously updated by the instrument. This part can
be read only. Upon reading, its contents is set to zero. In linguistic
usage, the EVENt part is often treated as equivalent to the complete
register.

ENABle part The ENABle part determines whether the associated EVENt bit
contributes to the sum bit (see below). Each bit of the EVENt part is
ANDed with the associated ENABle bit (symbol ’&’). The results of
all logical operations of this part are passed on to the sum bit via an
OR function (symbol ’+’).
ENABle-Bit = 0: the associated EVENt bit does not contribute to the
sum bit.
ENABle-Bit = 1: if the associated EVENT bit is "1", the sum bit is set
to "1" as well.
This part can be written to and read. Reading does not affect its
contents.

Sum bit As mentioned above, the sum bit is obtained from the EVENt part and
the ENABle part for each register. The result is entered as a bit of the
CONDition part into the next higher register.
The instrument automatically generates a sum bit for each register. It
is thus ensured that an event, for example a PLL that has not locked,
can produce a service request throughout all hierarchical levels.

 Status Reporting System
 Overview of the Status Registers 2

 2-5

 Note
The service request enable (SRE) register defined in IEEE 488.2 can be
taken as the ENABle part of the STB if the STB is structured in accordance
with SCPI. Analogously, the ESE can be taken as the ENABle part of the
ESR.

Overview of the Status Registers

Summary of IEEE 488.2 Status Structure Register

* The use of 15 is not allowed since some controllers may have difficulty
 reading a 16 bit unsigned integer. The value of this bit shall always be 0.

SRQ

Standard Event
Status Register

Operation Complete
 Not used

Query Error
Device Dependent Error

Execution Error
Command Error

User Request
Power On

0
1
2
3
4
5
6
7

OPERation Status

Reserved
Reserved
RANGing

SWEeping
MEASuring

Waiting for TRIGger Summary
Reserved
Reserved

SYNChronized
Sync available (reserved)

Averaging
Reserved

CALCulation
Reserved
Reserved

NOT USED*

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

QUEStionable:CURRent

INPut1 overload
INPut3 overload
INPut5 overload
INPut7 overload
INPut9 overload

INPut11 overload
Reserved
Reserved

INPut1 underload
INPut3 underload
INPut5 underload
INPut7 underload
IN Put9 underload

INPut11 underload
Reserved

NOT USED*

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

QUEStionable Status

QUEStionable: VOLTage

VOLTage
CURRent
Reserved
Reserved
Reserved

FREQuency
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

NOT USED*

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

INPut2 overload
INPut4 overload
INPut6 overload
INPut8 overload

INPut10 overload
INPut12 overload

Reserved
Reserved

INPut2 underload
INPut4 underload
INPut6 underload
INPut8 underloa

INPut10 underload
INPut12 underload

Reserved
NOT USED*

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Status Byte

Reserved
Reserved

Error/Event Queue

MAV

RQS

0
1
2
3
4
5
6
7

Error/Event Queue Output Buffer

+

+

+

+

+
+

eya004.eps

Figure 2-2. Minimum Structure Reporting Structure Required by SCPI

Remote Control
Users Guide

2-6

Description of Status Registers

Status Byte (STB) and Service Request Enable Register (SRE)
The STB is already defined in IEEE 488.2. It provides a rough overview of the
instrument status by collecting the pieces of information of the lower registers. It can thus
be compared with the CONDition part of an SCPI register and assumes the highest level
within the SCPI hierarchy. A special feature is that bit 6 acts as the sum bit of the
remaining bits of the status byte.
The status byte is read using the command *STB? or a serial poll.
The STB is assigned an SRE. The SRE functionally corresponds to the ENABle part of
the SCPI registers. Each bit of the STB is assigned a bit of the SRE. Bit 6 of the SRE is
ignored. If a bit is set in the SRE and the associated bit in the STB changes from 0 to 1, a
service request (SRQ) is generated on the IEC/IEEE bus which triggers an interrupt in the
controller (if the controller is configured correspondingly) and can be further processed
there.
The SRE can be set using the command *SRE and read using the command *SRE?.

Table 2-1. Meaning of the Bits Used in the Status Byte

Bit No. Meaning

2 Error Queue Not Empty

This bit is set if an entry is made in the error queue.If the bit is enabled by the SRE, each
entry in the error queue generates a service request. Thus an error can be recognized
and determined in greater detail by polling the error queue. The poll provides an
informative error message. This procedure is recommended since it considerably
reduces the problems involved in IEC/IEEE-bus control.

3 QUEStionable Status sum bit

This bit is set if an EVENt bit is set in the QUEStionable status register and the
associated ENABle bit is set to 1. If the bit is set, this indicates a questionable
instrument status which can be determined in greater detail by polling the QUEStionable
status register.

4 MAV bit (Message AVailable)

This bit is set if a message is available in the output buffer which can be read. The bit
can be used for the automatic reading of data from the instrument to the controller (see
chapter 7, "Programming Examples").

5 ESB bit

Sum bit of event status register. It is set if one of the bits of the event status register is
set and enabled in the event status enable register. If the bit is set, this indicates a
serious error which can be determined in greater detail by polling the event status
register.

6 MSS bit (Master Status Summary bit)

This bit is set if the instrument triggers a service request. This is the case if one of the
other bits of this register is set together with its mask bit in the service request enable
(SRE) register.

7 OPERation Status Register sum bit

This bit is set if an EVENt bit is set in the OPERation status register and the associated

 Status Reporting System
 Description of Status Registers 2

 2-7

ENABle bit is set to 1. If the bit is set, this indicates that the instrument is just carrying
out an action. The type of action can be determined by polling the OPERation status
register.

Event Status Register (ESR) and Event Status Enable Register (ESE)
The ESR is already defined in IEEE 488.2. It can be compared with the EVENt part of an
SCPI register. The event status register can be read using the command *ESR?. The ESE
is the associated ENABle part. It can be set using the command *ESE and read using the
command *ESE?

Table 2-2. Meaning of the Bits Used in the Event Status Register

Bit No. Meaning

0 Operation Complete

This bit is set on receipt of the command *OPC when all previous commands have been
executed.

1 This bit is not used.

2 Query Error

This bit is set if either the controller wants to read data from the instrument without
having sent a query, or if it does not fetch requested data and sends new instructions to
the instrument instead. The cause is often a query which is errored and hence cannot be
executed.

3 Device-Dependent Error

This bit is set if a device-dependent error occurs. An error message with a number
between -300 and -399 or a positive error number, which denotes the error in greater
detail, is entered into the error queue (see section "Error Messages").

4 Execution Error

This bit is set if a received command is syntactically correct but cannot be executed for
other reasons. An error message with a number between -200 and –300, which denotes
the error in greater detail, is entered into the error queue (see section "Error
Messages").

5 Command Error

This bit is set if a command is received which is undefined or syntactically not correct.
An error message with a number between -100 and –200, which denotes the error in
greater detail, is entered into the error queue (see section "Error Messages").

6 User Request

This bit is set when the [LOCAL] key is pressed, i.e. when the instrument is switched
over to manual control.

This bit is not used.

7 Power On (AC supply voltage On)

This bit is set on switching on the instrument.

STATus:OPERation Register
In the CONDition part, this register contains information on which actions the instrument
is being executing or, in the EVENt part, information on which actions the instrument has

Remote Control
Users Guide

2-8

executed since the last reading. It can be read using commands
"STATus:OPERation:CONDition?" or "STATus:OPERation[:EVENt]?".

Table 2-3. Meaning of the Bits in the STATus.OPERation Register

Bit No. Meaning

0 to 1 These bits are not used.

2 RANGing

This bit is set while the instrument is changing range on input channels when in
autorange mode.

3 SWEeping

When memory recording is in progress this bit is set to 1. When filling pretrigger or
waiting for trigger this bit is not set.

4 Not used

5 Waiting for TRIGger Summary

When memory recording is waiting for trigger after it has been initiated by
INITiate[:IMMediate]:SEQuence1 or INITiate:CONTinuous:SEQuence1 ON, this bit is
set. It is reset to zero when the trigger arrives.

6 to 7 These bits are not used.

8 SYNChronized

This bit is set when the instrument is synchronized to valid SYNC source. This bit is set
to 0 when SYNC:STATe is set to OFF.

9 SYNChronization Available (reserved)

This bit is set if there is a valid synchronization signal present on at least one input
channel.

This bit is not used.

10 AVERaging

This bit is set if the instrument is processing its averaging cycle. In free-run mode, at the
end of each averaging cycle, this bit is set to 0 for a short period of time.

11 This bit is not used.

12 CALCulation

This bit is set to 1 if the calculation is running. Every time the calculation is completed
this bit is set to 0.

13 to 14 These bits are not used.

15 This bit is always 0.

STATus:QUEStionable Register
This register comprises information about indefinite states which may occur if the unit is
operated without meeting the specifications. It can be queried by commands:
STATus:QUEStionable:CONDition? and STATus:QUEStionable[:EVENt]?.

 Status Reporting System
 Description of Status Registers 2

 2-9

Table 2-4. Meaning of Bits in STATus:QUEStionable Register

Bit No. Meaning

0 QUEStionable:VOLTage Register Summary.

1 QUEStionable:CURRent Register Summary.

2 to 4 These bits are not used.

5 FREQuency.

The bit is set if frequency measurement is invalid due to a poor signal quality.

6 to 14 These bits are not used.

15 This bit is always 0.

STATus:QUEStionable:CURRent Register
This register comprises information about overload/underload states which may occur if
the input current channel range is exceeded or the input signal is too low. It can be
queried by commands STATus:QUEStionable:CURRent:CONDition? and
STATus:QUEStionable:CURRent[:EVENt]?.

Table 2-5. Meaning of Bits in STATus:QUEStionable:CURRent Register

Bit No. Meaning

0 INPut1 OVERrange

1 INPut3 OVERrange

2 INPut5 OVERrange

3 INPut7 OVERrange

4 INPut9 OVERrange

5 INPut11 OVERrange

6 to 7 These bits are not used.

8 INPut1 UNDERrange

9 INPut3 UNDERrange

10 INPut5 UNDERrange

11 INPut7 UNDERrange

12 INPut9 UNDERrange

13 INPut11 UNDERrange

14 This bit is not used.

15 This bit is always 0.

STATus:QUEStionable:VOLTage Register
This register comprises information about overload/underload states which may occur if
the input voltage channel range is exceeded or the input signal is too low. It can be
queried by commands STATus:QUEStionable:VOLTage:CONDition? and
STATus:QUEStionable:VOLTage[:EVENt]?.

Remote Control
Users Guide

2-10

Table 2-6. Meaning of bits in STATus:QUEStionable:VOLTage Register

Bit No. Meaning

0 INPut2 OVERrange

1 INPut4 OVERrange

2 INPut6 OVERrange

3 INPut8 OVERrange

4 INPut10 OVERrange

5 INPut12 OVERrange

6 to 7 These bits are not used.

8 INPut2 UNDERrange

9 INPut4 UNDERrange

10 INPut6 UNDERrange

11 INPut8 UNDERrange

12 INPut10 UNDERrange

13 INPut12 UNDERrange

14 This bit is not used.

15 This bit is always 0.

Application of the Status Reporting System
In order to be able to effectively use the status reporting system, the information
contained there must be transmitted to the controller and further processed there. There
are several methods which are represented in the following. Detailed program examples
are to be found in chapter „Programming Examples“.

Service Request, Making Use of the Hierarchy Structure (GPIB only)
Under certain circumstances, the instrument can send a service request (SRQ) to the
controller. Usually this service request initiates an interrupt at the controller, to which the
control program can react with corresponding actions. As evident from Fig. 5-4, an SRQ
is always initiated if one or several of bits 2, 3, 4, 5 or 7 of the status byte are set and
enabled in the SRE. Each of these bits combines the information of a further register, the
error queue or the output buffer. The corresponding setting of the ENABle parts of the
status registers can achieve that arbitrary bits in an arbitrary status register initiate an
SRQ. In order to make use of the possibilities of the service request, all bits should be set
to "1" in enable registers SRE and ESE.
Examples (cf. Fig. 5-4 and annex D, Program Examples, as well):
Use of command "*OPC" to generate an SRQ. While waiting for the SRQ, the program
may perform other tasks.

• Set bit 0 in the ESE (Operation Complete)
• Set bit 5 in the SRE (ESB)

After its settings have been completed, the instrument generates an SRQ. The SRQ is the
only possibility for the instrument to become active on its own. Each controller program

 Status Reporting System
 Application of the Status Reporting System 2

 2-11

should set the instrument in a way that a service request is initiated in the case of
malfunction. The program should react appropriately to the service request. A detailed
example for a service request routine is to be found in chapter „Programming Examples“.
Indicating the end of an averaging cycle by an SRQ via bit 10 in the STATus OPERation
Register. While waiting for the SRQ the program may perform other tasks.

• Set bit 7 in the SRE (summary bit of STATus:OPERation Register)
• Set bit 10 in the STATus:OPERation:ENABle Register (Averaging)
• Set bit 10 in the STATus:OPERation:NTRansition to ensure that the transition of

averaging bit 10 from 1 to 0 (Averaging) is also stored in the EVENt register.
Calling up the *CLS command causes all bits of the NTRansition and
PTRansition to be set to 1 so that any bit change is recorded. Enabling the desired
enable bit, in this case bit 10, will normally be sufficient.

After having completed the averaging cycle, the instrument generates an SRQ.

Serial Poll (GPIB only)
In a serial poll, just as with command "*STB?", the status byte of an instrument is
queried. However, the query is realized via interface messages and is thus clearly faster.
The serial-poll method has already been defined in IEEE 488.1 and used to be the only
standard possibility for different instruments to poll the status byte. The method also
works with instruments which do not adhere to SCPI or IEEE 488.2.
The VISA function for executing a serial poll is viReadSTB. Serial poll is mainly used to
obtain a fast overview of the state of several instruments connected to the IEC bus
(GPIB).

Query by Means of Commands
Each part of every status register can be read by means of queries. The individual
commands are indicated in the detailed description of the status registers above. What is
returned is always a number which represents the bit pattern of the register queried.
Evaluating this number is effected by the controller program.
Queries are usually used after an SRQ in order to obtain more detailed information on the
cause of the SRQ.

Error-Queue Query
Each error state in the instrument leads to an entry in the error queue. The entries of the
error queue are detailed plain-text error messages which can be looked at in the ERROR
menu via manual control or queried via the IEC bus using command "SYSTem:ERRor?".
Each call of "SYSTem:ERRor?" provides an entry from the error queue. If no error
messages are stored there any more, the instrument responds with 0, "No error".
The error queue should be queried after every SRQ in the controller program as the
entries describe the cause of an error more precisely than the status registers. Especially
in the test phase of a controller program the error queue should be queried regularly since
faulty commands from the controller to the instrument are recorded there as well.

Resetting Values of the Status Reporting System
Following Table comprises the different commands and events causing the status
reporting system to be reset. None of the commands, except for *RST and
SYSTem:PRESet influences the functional instrument settings. In particular, DCL does
not change the instrument settings.

Remote Control
Users Guide

2-12

Table 2-7. Resetting Instrument Functions

Event

Effect

Switching on
supply voltage

DCL,SDC

(Device Clear,
Selected Device

Clear)

*RST *CLS

Clear STB,ESR yes - - yes

Clear SRE,ESE yes - - -

Clear EVENTt parts
of the Registers

yes - - yes

Clear Enable parts
of all OPERation
and QUEStionable
registers

yes - - -

Fill PTRansition
parts with "1", Clear
NTRansition parts

yes - - -

Clear error queue yes - - yes

Clear output buffer yes yes 1) 1)

Clear command
processing and
input buffer

yes yes - -

Every command being the first in a command line, i.e., immediately following a <PROGRAM MESSAGE
TERMINATOR> clears the output buffer.

 3-1

Chapter 3
Hardware Interfaces

 Title Page

Introduction.. 3-3
IEC/IEEE-Bus Interface (GPIB) - optional ... 3-3

Characteristics of Interface.. 3-3
Bus Lines ... 3-3
Interface Functions .. 3-5
Interface Messages .. 3-5
Universal Commands .. 3-5
Addressed Commands ... 3-6

RS-232-C Interface .. 3-6
Characteristics of Interface.. 3-6
Signal Lines ... 3-7
Transmission Parameters... 3-8
Interface Functions .. 3-8
Handshake ... 3-8

IEEE 802.3 (Ethernet) – Optional.. 3-9
Characteristics of Interface.. 3-9
Signal Lines ... 3-10
Connection Settings... 3-11

Universal Serial Bus (USB) - optional... 3-11
Characteristics of Interface.. 3-11
Connection Settings... 3-11

Remote Control
Users Guide

3-2

 Hardware Interfaces
 Introduction 3

 3-3

Introduction
By default the instrument is equipped with RS-232 interface. As an option, the instrument
can also be equipped with IEC/IEEE-Bus Interface (GPIB).

IEC/IEEE-Bus Interface (GPIB) - optional
The instrument is optionally equipped with an IEC/IEEE-bus interface. The connector to
IEEE 488 is provided at the rear of the instrument, see Figure 3-1. A controller for
remote control can be connected via the interface. Connection is made using a shielded
cable.

Characteristics of Interface
• 8-bit parallel data transmission
• Bidirectional data transmission
• Three-wire handshake
• High data transmission rate, max. 115 kB/s (measurement data), 1.2 MB/s (raw

data)
• Up to 15 devices can be connected
• Maximum length of connecting cables 15 m (single connection 2 m)
• Wired OR if several instruments are connected in parallel

12 1
13 24

shield SRQ

ATN IFC

NDAC

NRFD

DAV

EOI

DIO4

DIO3

DIO2

DIO1

logic GND

GND(11)

GND(10)

GND(9)

GND(8)

GND(7)

GND(6)

DIO8

REN

DIO6

DIO7

DIO5

eya005.eps

Figure 3-1. Pin Assignment of IEC/IEEE-Bus Interface

Bus Lines

Data bus with 8 lines DIO 1 to DIO 8
Transmission is bit-parallel and byte-serial in ASCII/ISO code. DIO1 is the least
significant bit, DIO8 the most significant.

Remote Control
Users Guide

3-4

Control bus with 5 lines
IFC (Interface Clear):

Active LOW resets the interfaces of the instruments connected to the default
setting.

ATN (Attention):
Active LOW signals the transmission of interface messages.
Inactive HIGH signals the transmission of device messages.

SRQ (Service Request):
Active LOW enables the instrument to send a service request to the controller.

REN (Remote Enable):
Active LOW enables switchover to remote control.

EOI (End or Identify):
This has two functions in conjunction with ATN:
ATN = HIGH Active LOW marks the end of a data transmission.
ATN = LOW Active LOW triggers a parallel poll.

Handshake bus with 3 lines
DAV (Data Valid):

Active LOW signals a valid data byte on the data bus.
NRFD (Not Ready For Data):

Active LOW signals that one of the devices connected is not ready to accept data.
NDAC (Not Data Accepted):

Active LOW as long as the instrument is accepting the data present on the data
bus.

 Hardware Interfaces
 IEC/IEEE-Bus Interface (GPIB) - optional 3

 3-5

Interface Functions
Instruments which can be remote-controlled via the IEC/IEEE bus can be equipped with
different interface functions. Table below lists the interface functions relevant for the
instrument.

Table 3-1. Interface Functions

Control character Interface functions

SH1 Handshake source function (Source Handshake).

AH1 Handshake drain function (Acceptor Handshake).

L4 Listener function.

T6 Talker function, ability to respond to serial poll.

SR1 Service request function (Service Request).

PP1 Parallel poll function <not implemented>

RL1 Remote/local switchover function <not implemented>

DC1 Reset function (Device Clear) <not implemented>

DT1 Trigger function (Device Trigger) <not implemented>

Interface Messages
Interface messages are transmitted to the instrument on the data lines, with the ATN
(Attention) line being active LOW. These messages serve for communication between
the controller and the instrument.

Universal Commands
Universal commands are in the code range 10 to 1F hex. They act on all instruments
connected to the bus without addressing them before.

Table 3-2. Universal Commands

Command QuickBASIC command Effect on the instrument

DCL (Device Clear)

<not implemented>

IBCMD (controller%, CHR$(20)) Aborts the processing of the
commands just received and sets
the command processing software
to a defined initial state. Does not
change the instrument setting.

IFC (Interface Clear) IBSIC (controller%) Resets the interfaces to the
default state.

LLO (Local Lockout)

<not implemented>

IBCMD (controller%, CHR$(17)) Manual switchover to LOCAL is
disabled.

SPE (Serial Poll Enable) IBCMD (controller%, CHR$(24)) Ready for serial poll.

SPD (Serial Poll Disable) IBCMD (controller%, CHR$(25)) End of serial poll.

PPU (Parallel Poll
Unconfigure)

IBCMD (controller%, CHR$(21)) End of parallel polling state.

Remote Control
Users Guide

3-6

Addressed Commands
Addressed commands are in the code range 00 to 0F hex. They only act on instruments
addressed as listeners.

Table 3-3. Addressed Commands

Command QuickBASIC command Effect on the instrument.

SDC (Selected Device Clear)

<not implemented>

IBCLR (device%) Aborts the processing of the
commands just received and sets
the command processing software
to a defined initial state. Does not
change the instrument setting.

GET (Group Execute Trigger)

<not implemented>

IBTRG (device%) Triggers a previously active
instrument function (eg a sweep).
The effect of this command is
identical to that of a pulse at the
external trigger signal input.

GTL (Go to Local)

<not implemented>

IBLOC (device%) Transition to LOCAL state
(manual control).

PPC (Parallel Poll Configure)

<not implemented>

IBPPC (device%, data%) Configures the instrument for
parallel polling. The QuickBASIC
command additionally executes
PPE / PPD.

RS-232-C Interface
The instrument is fitted with an RS-232-C interface as standard. The 9-contact interface
is provided at the rear of the unit, see Figure 3-2. A controller for remote control can be
connected via the interface.

Characteristics of Interface
• Serial data transmission in asynchronous mode
• Bidirectional data transmission via two separate lines
• Selectable transmission rate from 1200 to 115200 baud
• Logic 0 signal level from +3 V to +15 V
• Logic 1 signal level from –15 V to –3 V
• An external unit (controller) can be connected
• Software handshake (XON, XOFF)
• Hardware handshake

 Hardware Interfaces
 RS-232-C Interface 3

 3-7

CTS

TxD
RxD

GND

1

6

5

9

RTS

2 - TxD (transmit data to DTE/controller)
3 - RxD (receive data from DTE/controller)
4 - DSR
5 - GND
6 - DTR
7 - CTS (input from DTE/controller)
8 - RTS (output to DTE/controller)
9 - RI

eya006.eps

Figure 3-2. Pin Assignment of RS-232-C Interface

Signal Lines
RxD (Receive Data):

Data line; transmission from external controller to instrument.
TxD (Transmit Data):

Data line; transmission from instrument to external controller.
DTR (Data terminal ready):

Not used.
GND (Ground):

Interface ground, connected to instrument ground.
DSR (Data Set Ready):

Not used.
RTS (Request To Send):

The device sets RTS line low (logic 0) when it cannot accept more data from the
DTE/controller.

CTS (Clear To Send):
The device stops transmitting data to the DTE/controller when it detects CTS line
goes low.

Remote Control
Users Guide

3-8

Transmission Parameters
To ensure error-free and correct data transmission, the transmission parameters on the
instrument and the controller must have the same settings. The settings are made in the
General Setup screen of the instrument.
Transmission rate
(baud rate)

Eight different baud rates can be set on the instrument:
1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Data bits Data transmission is in 8-bit or 7-bit ASCII code. The LSB (least
significant bit) is transmitted as the first bit.

Start bit The transmission of a data byte is initiated with a start bit. The falling
edge of the start bit indicates the beginning of the data byte.

Parity bit Odd, Even, Zero, One, None
Stop bit The transmission of a data byte is terminated by a stop bit.

Bit 01 = start bit Bits 02 to 09 = data bits Bit 10 = stop bit

Bit duration = 1/baud rate

01 02 03 04 05 06 07 08 09 10

Example
Transmission of character A (41 hex) in 8-bit ASCII code:

Interface Functions
For interface control, a number of control characters defined from 0 to 20 hex of the
ASCII code can be transmitted via the interface.

Table 3-4. Control Characters for RS-232-C Interface

Control character Interface functions

<Ctrl Q> 11 hex Enable character output (XON).

<Ctrl S> 13 hex Stop character output (XOFF).

Break (at least 1 character
logic 0)

Clear input buffer of the instrument. All pending queries will be aborted. It is
similar to IFC on GPIB interface.

0Ahex Terminator <LF>. The instrument goes to remote state upon receipt of this
character together with a valid command.

Handshake

Software Handshake
The software handshake with the XON/XOFF protocol controls data transmission. If the
receiver (instrument) wishes to inhibit the input of data, it sends XOFF to the transmitter.
The transmitter then interrupts data output until it receives XON from the receiver. The
same function is also provided at the transmitter end (controller).

Note
The software handshake is not suitable for the transmission of binary data.
Here thehardware handshake is to be preferred.

 Hardware Interfaces
 IEEE 802.3 (Ethernet) – Optional 3

 3-9

Hardware Handshake
With a hardware handshake, the instrument signals its readiness for reception via the
lines DTR and RTS. A logic 0 means "ready", a logic 1 means "not ready".

Whether or not the controller is ready for reception is signalled to the instrument via the
CTS or the DSR line (see section "Signal Lines"). The transmitter of the instrument is
switched on by a logic 0 and off by a logic 1. The RTS line remains active as long as the
serial interface is active. The DTR line controls the instrument’s readiness for reception.

Wiring between Instrument and Controller
Wiring between the instrument and the controller is by means of an extension cable (in
case of a 9 pin controller connector), ie the data, control and signalling lines have
straight-through wiring. The wiring plan below applies to controllers with a 9-pin or 25-
pin connector.

------------ DCD / DCD ----------
------------- TxD / RxD -----------
------------- RxD / TxD -----------
------------ DSR / DTR ----------
----------- GND / GND ---------
------------DTR / DSR----------
------------ CTS / RTS ----------
------------ RTS / CTS ----------

---------------- RI / RI--------------

Controller
9-pin male

------------DCD / DCD ----------
-------------TxD / RxD -----------
-------------RxD / TxD -----------
------------DSR / DTR ----------
-----------GND / GND ---------
------------DTR / DSR ----------
------------CTS / RTS ----------
------------RTS / CTS ----------

---------------- RI / RI--------------

Controller
25-pin male

Instrument
9-pin female

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

7
8
9

Instrument
9-pin female

1
2
3
4
5
6
7
8
9

8
3
2

20
7
6
4
5

22

eya008.eps

Figure 3-3. Wiring of Data, Control and Signalling Lines for Hardware Handshake

IEEE 802.3 (Ethernet) – Optional
The instrument is optionally equipped with IEEE 802.3 (Ethernet) interface. The
connector to Ethernet interface (RJ-45) is provided at the rear of the instrument (see
Figure 3-4). A controller for remote control can be connected via the interface.
Connection is made using a twisted pair cable.

Characteristics of Interface
• Bidirectional TCP/IP data transmission
• 10/100Mbps operation
• Half / Full duplex operation
• High data transmission rate, max. 240 kB/s (measurement data), 1.3 MB/s (raw

data)

Remote Control
Users Guide

3-10

1 - TD + (Transmit Data Plus)
2 - TD (Transmit Data Minus)
3 - RD + (Receive Data Plus)

6 - (Receive Data Minus)

1 2 34 5 6 7 8

eya009.eps

Figure 3-4. Pin Assignment of IEEE 802.3 (Ethernet) Interface (RJ-45 Connector)

Signal Lines
TD + (Transmit Data Plus):

Transmit data plus-the positive signal for the TD differential pair contains the
serial output data stream transmitted from the instrument onto the network.

TD − (Transmit Data Minus):
Transmit data minus-the negative signal for the TD differential pair contains the
same output as pin 1 (TD +).

RD + (Receive Data Plus):
Receive data plus-the positive signal for the RD differential pair contains the
serial input data stream received by instrument from the network.

RD − (Receive Data Minus):
Receive data minus-the negative signal for the RD differential pair contains the
same input as pin 3 (RD +).

Wiring between Instrument and Controller
Wiring between the instrument and the controller is by means of a twisted pair cable
(with RJ-45 plugs). The wiring plan shown in Figure 3-5 applies to connection in local
area network via hub/switch and direct connection (controller connected to the instrument
directly using crossover cable).

----------- TD + / RD + ---------
----------- ---------
----------- RD + / TD + ---------

---------- --------

Hub/Switch

----------- TD + / RD + ---------
--- -------- ---------
----------- RD + / TD + ---------

---------- --------

Controller
(NIC) Instrument

1
2
3
4
5
6
7

8

1
2
3
4
5
6
7

8

Instrument

1
2
3
4
5
6
7

8

3
6
1
4
5
2
7

8

Crossover Cable Patch (straight -through) Cable

eya010.eps

Figure 3-5. IEEE 802.3 (Ethernet) Wiring of Signalling Lines

 Hardware Interfaces
 Universal Serial Bus (USB) - optional 3

 3-11

Connection Settings
To control the instrument over ethernet interface, a TCP/IP connection must be
established first, using the settings below:
IP address Internet Protocol address of the instrument (e.g. 192.168.1.100).
TCP port number Transmission Control Protocol port number. Currently, this is fixed to

number 23 (which is assigned to “telnet” service).
IP subnet address
mask

Internet Protocol sub network address mask (e.g. 255.255.255.0).

IP gateway
address

Internet Protocol address of the gateway (e.g. 192.168.1.1).

On the instrument side, the General Setup screen is used to configure these settings.
When making connection, the controller must use the instrument’s IP address and TCP
port for the destination address.

Universal Serial Bus (USB) - optional
The instrument is optionally equipped with USB interface. The connector to USB
interface (USB series "B" receptacle) is provided at the rear of the instrument, see Figure
3-6. A controller for remote control can be connected via the interface. Connection is
made using USB A to USB B cable (also called USB A/B cable or series "A" plug to
series "B" plug cable).

Characteristics of Interface
• Bidirectional USB data transmission
• USB 1.1 and USB 2.0 compatible
• Data transmission rate 800 kB/s (raw data)

1 - VBUS (power)
2 - (data minus)
3 - D + (data plus)
4 - GND (ground)

eya011.eps

Figure 3-6. Pin Assignment of USB Interface (Series "B" Receptacle)

Connection Settings
To control the instrument over USB interface, a serial port connection must be
established first, using the VCP (Virtual COM Port) name (e.g. "COM3"), that is
associated with the USB interface of the instrument. This VCP name can be found in
Windows device manager under "Ports (COM & LPT)". You will find port named
"NORMA Power Analyzer USB Serial Port" there, when the instrument is powered on
and connected to PC via USB cable.
On the instrument side, the General Setup screen is used to select USB interface. No
other setting need to be made on the instrument side.

Remote Control
Users Guide

3-12

 4-1

Chapter 4
Remote Control - Description of

Commands

 Title Page

Introduction.. 4-3
Common Commands ... 4-3
Measurement Functions... 4-5

<function> ... 4-5
ABORt Subsystem... 4-10

CALCulate Subsystem.. 4-11
DISPlay Subsystem... 4-24
FORMat Subsystem .. 4-25

Hardcopy Subsystem... 4-30
INITiate Subsystem... 4-31
INPut Subsystem ... 4-32

OUTPut Subsystem... 4-36
ROUTe Subsystem .. 4-37
SENSe Subsystem ... 4-38
SENSe2 Subsystem (Option Process Interface) .. 4-53
SOURce Subsystem (Option Process Interface) ... 4-64
SYNC Subsystem .. 4-67
TRIGger Subsystem .. 4-81
SYSTem Subsystem .. 4-86
STATus Subsystem ... 4-92

List of Commands Grouped By Subsystems ... 4-105

Remote Control
Users Guide

4-2

 Remote Control - Description of Commands
 Introduction 4

 4-3

Introduction
In the following sections, all commands implemented in the instrument are first listed in
tables and then described in detail, arranged according to the command subsystems. The
notation is adapted to the SCPI standard. The SCPI conformity information is included in
the individual description of the commands.
All commands can be used for control via all interfaces.

Common Commands
The common commands are taken from the IEEE 488.2 (IEC 625-2) standard. A
particular command has the same effect on different devices. The headers of these
commands consist of an asterisk "*" followed by three letters. Many common commands
refer to the status reporting system which is described in detail above.

Command Parameter Function Comment

*CLS Clear Status no query

*ESE 0 to 255 Event Status Enable

*ESR? Standard Event Status
Query

query only

*IDN? Identification Query query only

*OPC Operation Complete

*OPC? Operation Complete
Query

*OPT? Option Identification
Query

query only

*RST Reset no query

*SRE 0 to 255 Service Request Enable

*STB? Status Byte Query query only

*WAI Wait to continue no query

*SAV 10 to 24 Save User Setup no query

*RCL 1 to 9

10 to 24

Recall Standard Setup

Recall User Setup

no query

*LRN? Learn Setup String query only

*TRG Trigger no query

Command Description

*CLS

CLEAR STATUS sets the status byte (STB), the standard event register
(ESR) and the EVENt-part of the QUEStionable and the OPERation
registers to zero. The command does not alter the mask and transition parts
of the registers. It clears the output buffer.

*ESE 0 to 255

EVENT STATUS ENABLE sets the event status enable register to the value
indicated. The query form *ESE? returns the contents of the event status
enable register in decimal form.

Remote Control
Users Guide

4-4

*ESR?

STANDARD EVENT STATUS QUERY returns the contents of the event
status register in decimal form (0 to 255) and subsequently sets the register
to zero.

*IDN? IDENTIFICATION QUERY queries the instrument identification. The
response is for example:

"Fluke,NORMA4000,KN34512BA,01.00"

KN34512BA = Serial number of the instrument

01.00 = Firmware version number

*OPC OPERATION COMPLETE sets bit 0 in the event status register when all
preceding commands have been executed. This bit can be used to initiate a
service request.

*OPC?

OPERATION COMPLETE QUERY writes message "1" into the output buffer
as soon as all preceding commands have been executed.

*OPT?

OPTION IDENTIFICATION QUERY queries the options included in the
instrument and returns a list of the options installed. The options are
separated from each other by means of commas. Requests identification of
the device options. Example of a device response: "Option1,Option2".

*RST

RESET sets the instrument to a defined default status. The default setting is
indicated in the description of the commands.

*SRE 0 to 255

SERVICE REQUEST ENABLE sets the service request enable register to
the indicated value. Bit 6 (MSS mask bit) remains 0. This command
determines under which conditions a service request is generated. The
query form *SRE? reads the contents of the service request enable register
in decimal form. Bit 6 is always 0.

*STB?

READ STATUS BYTE QUERY reads out the contents of the status byte in
decimal form.

*TRG

TRIGGER immediately starts the measurement if the instrument is in single-
shot mode (INITiate:CONTinuous OFF). This command corresponds to
INITiate:IMMediate (see section "TRIGger subsystem"). If memory recording
is configured, ARM and TRIGger layers are bypassed and the instrument
immediately starts storing data.

Synchronization condition must be met if synchronization is ON.

*WAI

WAIT-to-CONTINUE permits servicing of subsequent commands only after
all preceding commands have been executed and all signals have settled.

*SAV 10 to 24

SAVE SETUP saves instrument setup into the specified user configuration
memory.

*RCL 1 to 24

RECALL SETUP recalls instrument setup from the specified configuration
memory.

*LRN?

LEARN SETUP STRING queries complete instrument setup. The setup is
returned as a sequence of semicolon separated commands. If this sequence
is sent to the instrument, the instrument configuration is fully restored.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-5

Measurement Functions

<function>
The <function> is hiearchical measurement function indicating the type of averaged
electrical quantity the instrument will be configured to measure. One value of <function>
is calculated over one averaging cycle of the instrument. When using the
[SENSe:]FUNCtion subsystem, multiple functions can be measured/calculated
concurrently. The <function> has the following syntax:
<function> ::=“<function_name>”
If used with [SENSe:]FUNCtion subsystem, the <function_name> is STRING
PROGRAM DATA, ie. the function_names are enclosed in double quotes. If multiple
functions are specified, each function_name must be enclosed in quotes.

Example:
FUNC “VOLT1:DC“ Measure True RMS on phase 1
FUNC “VOLT1:AC“, “VOLT2:AC“,
“VOLT3:AC“

Measure RMS on phases 1, 2 and 3

When a <function> is returned in response to a query, it contains no white space. The
mnemonics in the query response uses short form with default nodes omitted. All alpha
characters in the response are in uppercase.
The first node of the function_name has an integer numerical suffix that is used to
distinguish among phases of a multiphase system. See the list of the valid suffixes below.

Suffix Phase

1 L1

2 L2

3 L3

4 L4 of the 12 channel model

5 L5 of the 12 channel model

6 L6 of the 12 channel model

No suffix Average/Total/Overall value from channels of 1st 3-phase system (phase 1 … phase 3)
or 1st 2-phase system (phase 1 .. phase 2) when two-wattmeter (2W/Aron) configuration
is active.

460 Average/Total/Overall value from channels of 2nd 3-phase system (phase 4 … phase 6)
or 2nd 2-phase system (phase 3 .. phase 4) when two-wattmeter (2W/Aron)
configuration is active.

123 Average phase-to-phase voltage of 1st 3-phase system (phase 1 … phase 3) or 1st 2-
phase system (phase 1 .. phase 2) when two-wattmeter (2W/Aron) configuration is
active.

456 Average phase-to-phase voltage of 2nd 3-phase system (phase 4 … phase 6) or 2nd 2-
phase system (phase 3 .. phase 4) when two-wattmeter (2W/Aron) configuration is
active.

Remote Control
Users Guide

4-6

The optional MINimum/MAXimum part of the function name specifies that extreme
value of this function will be returned. After each averaging cycle, the new average value
is compared against MIN/MAX registers, so the extreme values are acquired over many
averaging cycles until they are reset with a specific command.
The MINimum/MAXimum capability is not the same as PHIGH/PLOW. PHIGH/PLOW
returns highest/lowest sampled value found within the current averaging interval.
The MINimum/MAXimum capability must be enabled in CALCulate subsystem before it
can be used as a <function>.
< The MINimum/MAXimum options are currently unimplemented. >
The optional IPOSitive/INEGative/INTegral part of the function name specifies that
summed value (integral) of this function will be returned. IPOSitive causes only the
positive values of the function to be summed, INEGative causes only the negative values
of the function to be summed, INTegral provides the sum of both. The
IPOSitive/INEGative/INTegral capability must be enabled in CALCulate subsystem
before it can be used as a <function>. The integrated values can be reset to zero with
CALCulate:INTegral:CLEar[:IMMediate] command.

Base Instrument Measurement Functions

Function
(Quantity)

Command If no suffix
(1st system)
or 460 (2nd

system)
present

True RMS Voltage VOLTage[1..6|460][:DC][:MINimum|MAXimum] Average
Voltage trms

RMS without DC
component

VOLTage[1..6|460]:AC[:MINimum|MAXimum] Average
Voltage rms

True RMS phase-
to-phase Voltage

VOLTage[12|23|31|45|56|64][:DC][:MINimum|MAXimum]

Rectified Mean
phase-to-phase
Voltage

VOLTage[12|23|31|45|56|64]:RMEAN[:MINimum|MAXimum]

Rectified Mean
phase-to-phase
Voltage Corrected

VOLTage[12|23|31|45|56|64]:RMCORR[:MINimum|MAXimum]

phase-to-phase
Voltage Harmonic

VOLTage[12|23|31|45|56|64]:HAR[:MINimum|MAXimum]

phase-to-phase
Voltage Form
Factor

VOLTage[12|23|31|45|56|64]:FFACtor[:MINimum|MAXimum]

phase-to-phase
Voltage THD

VOLTage[12|23|31|45|56|64]:THD[:MINimum|MAXimum]

phase-to-phase
Voltage Harmonic
Content

VOLTage[12|23|31|45|56|64]:HCONTent[:MINimum|MAXimum]

 Remote Control - Description of Commands
 Measurement Functions 4

 4-7

phase-to-phase
Voltage
Fundamental
Content

VOLTage[12|23|31|45|56|64]:FCONTent[:MINimum|MAXimum]

Average true RMS
phase-to-phase
Voltage

VOLTage123|456[:DC][:MINimum|MAXimum]

Average Mean
phase-to-phase
Voltage

VOLTage123|456:MEAN[:MINimum|MAXimum]

Average Rectified
Mean phase-to-
phase Voltage

VOLTage123|456:RMEAN[:MINimum|MAXimum]

Average Rectified
Mean phase-to-
phase Voltage
Corrected

VOLTage123|456:RMCORR[:MINimum|MAXimum]

Average phase-to-
phase Voltage
Harmonic

VOLTage123|456:HAR[:MINimum|MAXimum]

Mean value of
Voltage

VOLTage[1..6|460]:MEAN[:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Average Mean
Voltage

Rectified Mean
Voltage

VOLTage[1..6|460]:RMEAN[:MINimum|MAXimum] Average
Rectified Mean
Voltage

Rectified Mean
Voltage Corrected

VOLTage[1..6|460]:RMCORR[:MINimum|MAXimum] Average
Rectified Mean
Voltage
Corrected

Peak-to-peak
Voltage

VOLTage[1..6]:PTP[:MINimum|MAXimum]

Highest value
within averaging
interval

VOLTage[1..6]:PHIGH[:MINimum|MAXimum]

Lowest value
within averaging
interval

VOLTage[1..6]:PLOW[:MINimum|MAXimum]

Voltage Harmonic VOLTage[1..6|460]:HAR[:MINimum|MAXimum]
(order selectable with CALCulate:HARMonic:ORDer)

Average
Voltage Harm

Voltage Crest
Factor

VOLTage[1..6]:CFACtor[:MINimum|MAXimum]

Voltage Absolute
Phase

VOLTage[1..6]:PHASe[:MINimum|MAXimum]
(relative to synchronization signal)

Voltage Form
Factor

VOLTage[1..6]:FFACtor[:MINimum|MAXimum]

Remote Control
Users Guide

4-8

Voltage Harmonic
Content

VOLTage[1..6]:HCONTent[:MINimum|MAXimum]

Voltage
Fundamental
Content

VOLTage[1..6]:FCONTent[:MINimum|MAXimum]

Voltage THD VOLTage[1..6]:THD[:MINimum|MAXimum]

True RMS Current CURRent[1..6|460][:DC][:MINimum|MAXimum] Average
Current trms

RMS without DC
component

CURRent[1..6|460]:AC[:MINimum|MAXimum] Average
Current rms

Mean value of
Current

CURRent[1..6|460]:MEAN[:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Average Mean
Current

Rectified Mean
Current

CURRent[1..6|460]:RMEAN[:MINimum|MAXimum] Average
Rectified Mean
Current

Rectified Mean
Current Corrected

CURRent [1..6|460]:RMCORR[:MINimum|MAXimum] Average
Rectified Mean
Current
Corrected

Peak-to-peak
Current

CURRent[1..6]:PTP[:MINimum|MAXimum]

Highest value
within averaging
interval

CURRent[1..6]:PHIGH[:MINimum|MAXimum]

Lowest value
within averaging
interval

CURRent[1..6]:PLOW[:MINimum|MAXimum]

Current Harmonic CURRent[1..6|460]:HAR[:MINimum|MAXimum] Average
Current Harm

Current Crest
Factor

CURRent[1..6]:CFACtor[:MINimum|MAXimum]

Current Absolute
Phase

CURRent[1..6]:PHASe[:MINimum|MAXimum]
(relative to synchronization signal)

Current Form
Factor

CURRent[1..6]:FFACtor[:MINimum|MAXimum]

Current Harmonic
Content

CURRent[1..6]:HCONTent[:MINimum|MAXimum]

Current
Fundamental
Content

CURRent[1..6]:FCONTent[:MINimum|MAXimum]

Current THD CURRent[1..6]:THD[:MINimum|MAXimum]

Active Power POWer[1..6|460][:ACTive][:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Total Active
Power

 Remote Control - Description of Commands
 Measurement Functions 4

 4-9

Apparent Power POWer[1..6|460]:APParent[:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Total Apparent
Power

Reactive Power POWer[1..6|460]:REACtive[:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Total Reactive
Power

Power Factor POWer[1..6|460]:FACTor[:MINimum|MAXimum] Total Power
Factor

Corrected Power POWer[1..6|460]:CORRected[:MINimum|MAXimum] Total Corrected
Power

Electrical
Efficiency

POWer[460]:EFFiciency[:MINimum|MAXimum] Total Electrical
Efficiency

Phase Angle
between U and I
(arccos[PF])

PHASe[1..6|460][:MINimum|MAXimum] Total Phase
Angle
(arccos[PF])

Apparent
Impedance

IMPedance[1..6|460][:APParent][:MINimum|MAXimum] Total App.
Impedance

Serial Resistance RESistance[1..6|460]:SERial[:MINimum|MAXimum] Total Serial
Resitance

Parallel
Resistance

RESistance[1..6|460]:PARallel[:MINimum|MAXimum] Total Parallel
Resistance

Serial Reactance REACTance[1..6|460]:SERial[:MINimum|MAXimum] Total Serial
Reactance

Parallel
Reactance

REACTance[1..6|460]:PARallel[:MINimum|MAXimum] Total Parallel
Reactance

Active Power
Harmonic

POWer[1..6|460][:ACTive]:HAR[:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Total Active
Power Harm.

Apparent Power
Harmonic

POWer[1..6|460]:APParent:HAR[:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Total Apparent
Power Harm.

Reactive Power
Harm.

POWer[1..6|460]:REACtive:HAR[:MINimum|MAXimum|
 IPOSitive|INEGative|INTegral]

Total Reactive
Power Harm.

Power Factor
Harmonic

POWer[1..6|460]:FACTor:HAR[:MINimum|MAXimum] Total Power
Factor Harm.

Electrical
Efficiency
Harmonic

POWer[460]:EFFiciency: HAR[:MINimum|MAXimum] Total Electrical
Efficiency
Harm.

Phase Angle U to
I Harm.
(arccos[PF])

PHASe[1..6|460]:HAR[:MINimum|MAXimum] Total Phase
Angle Har.
(arccos[PF])

Apparent
Impedance
Harmonic

IMPedance[1..6|460][:APParent]:HAR[:MINimum|MAXimum] Total App.
Impedance
Harmonic

Serial Resistance
Harmonic

RESistance[1..6|460]:SERial:HAR[:MINimum|MAXimum] Total Serial
Resitance
Harmonic

Remote Control
Users Guide

4-10

Parallel
Resistance
Harmonic

RESistance[1..6|460]:PARallel:HAR[:MINimum|MAXimum] Total Par.
Resistance
Harmonic

Serial Reactance
Harmonic

REACTance[1..6|460]:SERial:HAR[:MINimum|MAXimum] Total Serial
Reactance
Harmonic

Parallel
Reactance
Harmonic

REACTance[1..6|460]:PARallel:HAR[:MINimum|MAXimum] Total Par.
Reactance
Hamonic

SYNC frequency FREQuency[:MINimum|MAXimum]

Averaging interval
length in seconds

TIME[:INTerval][:MINimum|MAXimum]

Time [secs] since
timer reset time

TIME:RELative

Additional Functions Available if Process Interface PI1 is Installed

Function
(Quantity)

Command If no suffix
present

Shaft torque TORQue[1..4][:MINimum|MAXimum] TORQue1

Rotational
speed

SPEed[1..4][:MINimum|MAXimum] SPEed1

Mechanical
Power

POWer[1..4]:MECHanical[:MINimum|MAXimum] POWer1:
MECHanical

Slip SLIP[1..4][:MINimum|MAXimum] SLIP1

Mechanical
efficiency

EFFiciency[1..4][:MINimum|MAXimum] EFFiciency1

Raw input
value

GPINput[1..8][:MINimum|MAXimum] GPINput1

ABORt Subsystem
The ABORt subsystem contains the commands to abort actions triggered. After an action
has been aborted, it can be triggered again at once. All commands trigger an event, thus
they have no *RST value.

Command Parameter Default
Value/Unit

Remark

:ABORt No query

ABORt

Description
Resets the triggering/synchronization system. When the measurement or data storage is
started after the trigger/synch condition is met, this command has no effect. This
command will take the instrument from 'wait for trigger/synch state' to the state before
issuing the INITiate[:IMMediate]:SEQuence command.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-11

Parameter(s)
None

Response
No query

*RST state
-

Example(s)
ABOR

Invalidates
-

Invalidated by
-

CALCulate Subsystem
The CALCulate subsystem contains commands to perform spectrum calculation, user-
defined electrical efficiency calculation and integration of the averaged values.

Command Parameter Default
Value/Unit

Remark

:CALCulate

 :TRANsform

 :FREQuency

 [:STATe]

 :MODE

 :FUNCtion

 :STARt

 :STOP

 :DATA?

 :PREamble?

 :INTegral

 [:STATe]

 :FUNCtion

 :CLEar

 [:IMMediate]

 :AUTO

 :STARt

 :SOURce

ONCE

FFT | DFT

<function list>

0

<value>

[<count>[,offset]]

ON | OFF

<function list>

ON | OFF

CMD | TIME | MAN

OFF

ON

CMD

no query

query only

query only

Remote Control
Users Guide

4-12

 [:IMMediate]

 :TIME

 :STOP

 :SOURce

 [:IMMediate]

 :TIME

 :TINTerval

 :HARMonic

 :ORDer

 :EFFiciency

 :FUNCtion

yyyy,mm,dd,hh,mm,ss

CMD | TIME | MAN | TINTerval

yyyy,mm,dd,hh,mm,ss

0 to ...

0 to 40

<function list>

CMD

1

CALCulate:TRANsform:FREQuency[:STATe] ONCE

Description
Initiates a single calculation of the frequency transform (spectrum), i.e. the instrument
calculates spectrum only upon receipt of this command. An attempt to perform the
spectrum calculation while SENSe:SWEep1[:STATe] is ON (memory storage of
samples) will generate error "-221, Settings conflict".

Parameter(s)
ONCE

Example(s)
CALC:TRAN:FREQ ONCE

*RST state
-

Invalidates
-

Invalidated by
-

CALCulate:TRANsform:FREQuency:MODE FFT | DFT

Description
Selects the harmonics calculation method.

Parameter(s)

FFT Calculates an FFT amplitude spectrum. Number of lines is determined by the
instrument and depends on the stop frequency, anti-aliasing filters setting and
instrument model.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-13

DFT

Calculates a DFT amplitude spectrum, i.e. the amplitude of the calculated
fundamental frequency and its integer multiples. Number of lines (harmonics) is
always 41 including the DC component.

Example(s)
CALC:TRAN:FREQ:MODE FFT
CALC:TRAN:FREQ:MODE? Response: FFT

*RST state
FFT

Invalidates
-

Invalidated by
-

CALCulate:TRANsform:FREQuency:FUNCtion <function>{,<function>}

Description
This command selects the <function>(s) to be used for spectrum calculation by the
instrument. The <function> is specified as a quoted string. For example: “VOLTage1”.
Comma separated list of <sensor_function> may be sent as parameters. Applying a new
list invalidates the previously active list (if any).
The query response returns a comma separated list of functions, each of which are
<STRING RESPONSE DATA>, i.e. enclosed in quotes. The query returns the short form
mnemonics and omits any default nodes in the <function>.
This function list does not get saved with *SAV and is cleared with *RST.

*RST state
"" (empty string = no values defined)

Example(s)
CALC:TRAN:FREQ:FUNC "VOLT1","CURR1","POW1"
CALC:TRAN:FREQ:FUNC? Response: "VOLT1","CURR1","POW1"

Invalidates
-

Invalidated by
-

CALCulate:TRANsform:FREQuency:STARt <frequency>

Description
This command specifies the start frequency of the harmonics calculation in hertz.

Remote Control
Users Guide

4-14

It will accept only 0 and return always 0.
This command is implemented for compatibility reasons.

Parameter(s)
<frequency>

*RST state
0.0 Hz

Example(s)
CALC:TRAN:FREQ:STAR 0.0
CALC:TRAN:FREQ:STAR? Response: 0.0

Invalidates
-

Invalidated by
-

CALCulate:TRANsform:FREQuency:STOP <frequency>

Description
This command specifies the upper frequency of the harmonics calculation (frequency of
the rightmost FFT or DFT spectrum line).

Parameter(s)
<frequency>
Minimum: 10 Hz
Maximum: sample rate / 2
Sample rate can be queried by means of [:SENSe]:SWEep:FREQuency?.
The instrument coerces the specified value to the next higher exact frequency.

*RST state
Highest possible value (depending on the instrument)

Example(s)
CALC:TRAN:FREQ:STOP 625.0
CALC:TRAN:FREQ:STOP ? Response: 625.0

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-15

CALCulate:DATA? [<count>[,<offset>]]

Description
Returns spectrum data in the format defined by the FORMAT commands. When there are
no arguments to this command, all data according to the preamble information is output.
First returned spectrum line (either FFT or DFT) corresponds to the DC component of the
signal.
If a harmonic could not be calculated due to violation of sampling theoreme for some
frequency in DFT mode, NaN is returned for that harmonic.
If a harmonics measurement has not yet been performed or if this query is sent during a
harmonics measurement (STATus:OPERation bit 12 is set) an error "-230, Data corrupt
or stale" is generated and no data is returned.

Parameter(s)
Parameters are optional.

<count> Specifies the number of lines/harmonics to be returned for each function.

<offset> If not specified spectrum data starting at higher than 0th line/harmonic (DC component)
are returned. Otherwise first line returned has index given by <offset>.

If <offset> + <count> exceeds the number of lines available, an error "-222 Data out of
range" is generated. Use CALCulate:DATA:PREamble? To obtain the actual number of
harmonics/lines available.

Response
When FORMat:TRANspose is ON, points are grouped by functions:

 <line1>,<line2>,<line3>,…........<line1>,<line2>,<line3>,…..

func1 func2
When FORMat:TRANspose is OFF, points are grouped by lines:

<func1>,<func2>,<func3>,…........<func1>,<func2>,<func3>,…..

line1 line2

*RST state
There is no response to this command after reset.

Example(s)
CALC:DATA? Response: 221.56,0.056,15.456,0.075,5.24,0.034….

Invalidates
-

Remote Control
Users Guide

4-16

Invalidated by
-

CALCulate:DATA:PREamble?

Description
Reads the spectrum data preamble. The preamble information is valid only spectrum data
from the same single spectrum calculation initiated by
CALCulate:TRANsform:FREQuency[:STATe] ONCE.
If this query is sent during a harmonics measurement (STATus:OPERation bit 12 is set)
an error "-230, Data corrupt or stale" is generated and no preamble data is returned.

Response
<start_time>,<line_count>,<function_count>,<freq>[,<freq>,…]
<start_time> Indicates time interval between the TIMer:RESet:TIME? and first point of
the sampled data that was used in the most recent spectrum calculation. If a harmonics
measurement has not yet been performed ASCII equivalent of NaN (+9.91E+37) is
returned for this item.
<line_count> Indicates number of spectrum lines calculated per function
<function_count> Indicates number of functions in the spectrum function list.
<freq>[,<freq>,…] Is a list that contains frequency steps (FFT) or fundamental
frequencies (DFT) for each function in the spectrum function list. First frequency
corresponds to the first function in the function list, second frequency corresponds to the
second function in the function list, etc.
For FFT frequency step is identical for all functions, for DFT every function can have an
individual fundamental frequency. If no fundamental frequency can be found, an ASCII
equivalent of NaN is returned (+9.91E+37).

*RST state

Example(s)
CALC:DATA:PRE? Response: 11.32, 40, 3, 50.0,50.0,50.0

Invalidates
-

Invalidated by
-

CALCulate:INTegral[:STATe] ON | OFF

Description
Controls the state of integration capability of the instrument. When enabled, the
instrument can integrate on some averaged measurement functions.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-17

Parameter(s)

ON Integration enabled.

OFF Intergration disabled.

Example(s)
CALC:INT ON
CALC:INT? Response: ON

*RST state
OFF

Invalidates
-

Invalidated by
-

CALCulate:INTegral:FUNCtion <function>{,<function>}

Description
Specifies function list for integral calculation. The <function> is specified as a quoted
string. For example: “POWer1”.
Comma separated list of <function> may be sent as parameters. Applying a new list
invalidates the previously active list (if any).
The query response returns a comma separated list of functions, each of which are
<STRING RESPONSE DATA>, i.e. enclosed in quotes. The query returns the short form
mnemonics and omits any default nodes in the <function>.
Averaged POWer and VOLTage/CURRent:MEAN values can be integrated. Specifiers
INTegral | PINTegral | NINTegral can be used then in the SENSe:FUNCtion /
SENSe:DATA? list to read the integrated values. If the integration function list is
changed or integration is turned OFF, the values corresponding to the functions that have
been removed return NaN as a response to SENSe:DATA?
SENSe:FUNCtion will generate error "-221, Settings conflict" if an attempt is made to set
SENSe:FUNCtion list containing an integrated function which is not part of integration
function list or while INTegral calculation is OFF. Maximum number of integrated
functions is 6.
*RCL and *RST clear all integrated values.

Parameter(s)
<function> Specifies the integrated function. List of valid functions:
 VOLTage1..6:MEAN
 CURRent1..6:MEAN
 POWer[1..6|460][:ACTive]
 POWer[1..6|460]:APParent
 POWer[1..6|460]:REACtive

Remote Control
Users Guide

4-18

 POWer[1..6|460][:ACTive]:HAR
 POWer[1..6|460]:APParent:HAR
 POWer[1..6|460]:REACtive:HAR

*RST state

Number of
Phases

Installed

Function list

1 “POW1”

2 “POW1”,“POW2”

3 “POW1”,“POW2”,“POW3”,“POW”

4 “POW1”,“POW2”,“POW3”,“POW”,“POW4”

5 “POW1”,“POW2”,“POW3”,“POW”,“POW4”,”POW5”

6 “POW1”,“POW2”,“POW3”,“POW”,“POW460”

Example(s)
CALC:INT:FUNC “POW1:ACT”
CALC:INT:FUNC? Response: “POW1”

Invalidates
-

Invalidated by
-

CALCulate:INTegral:CLEar[:IMMediate]

Description
This command sets values of all the integrated functions to zero. All values get set to zero
at the same time.

Parameter(s)
-

*RST state
-

Example(s)
CALC:INT:CLE

Invalidates
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-19

Invalidated by
-

CALCulate:INTegral:CLEar:AUTO ON | OFF

Description
This command controls automatic zeroing of the integrated functions are set to zero.

ON Integrated values get cleared at the start of the integration. All values get set to zero at
the start of integration.

OFF Automatic zeroing of integrated values is disabled.

Example(s)
CALC:INT:CLE:AUTO ON
CALC:INT:CLE:AUTO? Response: ON

*RST state
ON

Invalidates
-

Invalidated by
-

CALCulate:INTegral:STARt:SOURce CMD | TIME | MAN

Description
Specifies integration start condition.

Parameter(s)

CMD Integration starts upon receipt of the CALCulate:INTegral:STARt[:IMMediate] command.

TIME Integration will start at a time specified by command CALCulate:INTegral:STARt:TIME

MAN Integration will start when user presses F1 key on the front panel from within integration
measurement screen of the instrument

Example(s)
CALC:INT:STAR:SOUR CMD
CALC:INT:STAR:SOUR? Response: CMD

*RST state
CMD

Invalidates
-

Remote Control
Users Guide

4-20

Invalidated by
-

CALCulate:INTegral:STARt[:IMMediate]

Description
This command immediately starts the integration.
This command will also set the integrated values to zero if
CALCulate:INTegral:CLEar:AUTO is set to ON.
Attempt to start integration with this command when
CALCulate:INTegral:STARt:SOURce is not set to CMD will generate error –221,
“Settings conflict”

Parameter(s)
-

*RST state
-

Example(s)
CALC:INT:STAR

Invalidates
-

Invalidated by
-

CALCulate:INTegral:STARt:TIME <yyyy,MM,dd,hh,mm,ss>

Description
Specifies integration start time. The integration starts when the instrument’s internal
date/time is equal to the time specified with this command.

Parameter(s)

yyyy Year

MM Month

Dd Day

Hh Hours in 24 hour notation

Mm Minutes

ss Seconds (integer value)

*RST state
2002,1,1,0,0,0

 Remote Control - Description of Commands
 Measurement Functions 4

 4-21

Example(s)
CALC:INT:STAR:TIME 2002,01,12,12,30,00
CALC:INT:STAR:TIME? Response: 2002,01,12,12,30,00

Invalidates
-

Invalidated by
-

CALCulate:INTegral:STOP:SOURce CMD | TIME | MAN | TINTerval

Description
Specifies integration stop condition.
Stopping integration does not reset the integrated values to zero.

Parameter(s)

CMD Integration will stop upon receipt of the CALCulate:INTegral:STOP[:IMMediate]
command.

TIME Integration will stop at a time specified by command CALCulate:INTegral:STOP:TIME

MAN Integration will stop when user presses F2 key on the front panel from within integration
measurement screen of the instrument

TINTerval Integration will stop after the interval specified with CALCulate:INTegral:STOP:TINTerval
elapses from the start of the integration.

*RST state
CMD

Example(s)
CALC:INT:STOP:SOUR CMD
CALC:INT:STOP:SOUR? Response: CMD

Invalidates
-

Invalidated by
-

CALCulate:INTegral:STOP[:IMMediate]

Description
This command immediately stops integration.
Stopping integration does not reset the integrated values to zero.

Remote Control
Users Guide

4-22

Attempt to start integration with this command when
CALCulate:INTegral:STARt:SOURce is not set to CMD will generate error –221,
“Settings conflict”

Parameter(s)
-

*RST state
-

Example(s)
CALC:INT:STOP

Invalidates
-

Invalidated by
-

CALCulate:INTegral:STOP:TIME <yyyy,MM,dd,hh,mm,ss>

Description
Specifies integration stop time. The integration stops when the instrument’s internal
date/time is equal to the time specified with this command.

Parameter(s)

yyyy Year

MM Month

Dd Day

Hh Hours in 24 hour notation

Mm Minutes

ss Seconds (integer value)

*RST state
2010,1,1,0,0,0

Example(s)
CALC:INT:STOP:TIME 2002,01,12,12,30,00
CALC:INT:STOP:TIME? Response: 2002,01,12,12,30,00

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-23

CALCulate:INTegral:STOP:TINTerval <interval>

Description
Specifies integration interval in seconds. The integration after this interval elapses from
the start of the integration.

Parameter(s)
1.0e-3 to 9.99e+6

*RST state
6.00000E+01

Example(s)
CALC:INT:STOP:TINT 1.0
CALC:INT:STOP:TINT? Response: 1.0

Invalidates
-

Invalidated by
-

CALCulate: HARMonic:ORDer <order>

Description
Specifies harmonic order for measurement function
VOLTage[1..6|460]:HAR[:MINimum|MAXimum].

Parameter(s)
0 to 40 (currently, only 1 is valid)

*RST state
1

Example(s)
CALC:HARM:ORD 1
CALC:HARM:ORD? Response: 1

Invalidates
-

Invalidated by
-

Remote Control
Users Guide

4-24

CALCulate:POWer[460]:EFFiciency:REFerence <function1>,<function2>

Description
Specifies two functions for user-defined electrical efficiency calculation.
CALCulate:POWer:EFFiciency:REFerence specifies variables for electrical efficiency of
the 1st 2- or 3-phase system (POWer:EFFiciency).
CALCulate:POWer460:EFFiciency:REFerence specifies variables for electrical
efficiency of the 2nd 2- or 3-phase system (POWer460:EFFiciency).

Parameter(s)
<function1> and <function2> can be any of the averaged active powers measured by the
instrument:
"POWer[1..6|460][:ACTive]"

*RST state
CALCulate:POWer:EFFiciency:REFerence?: "POW460","POW"
CALCulate:POWer460:EFFiciency:REFerence?: "POW","POW460"

Example(s)
CALC:POW:EFF:REF “POW460”, “POW1”
CALC:POW:EFF:REF? Response: “POW460”, “POW1”

Invalidates
-

Invalidated by
-

DISPlay Subsystem
The DISPlay subsystem contains commands to control the display.

Command Parameter Default

Value/Unit

Remark

:DISPlay

 [:WINDow]

 [:STATe]

 :USER

 : FUNCtion

ON | OFF

<function list>

OFF

:DISPlay[:WINDow][:STATe] ON | OFF

Description
This command controls whether the instrument’s processor updates the display.
Brightness or power consumption of the display is not effected with this command.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-25

Parameter(s)

ON Display is updated by the processor.

OFF Processor of the instrument does not update the display saving more processing power
for extensive calculations.

Example(s)
DISP ON
DISP? Response: ON

*RST state
OFF

Invalidates
-

Invalidated by
-

:DISPlay:USER:FUNCtion <function>{,<function>}

Description
Specifies function list for user-defined measurement screen.

Parameter(s)
<function>{,<function>}

Example(s)
DISP:USER:FUNC "VOLT1:PHIGH","VOLT1:PLOW","VOLT1:PTP"
DISP:USER:FUNC?
Response: "VOLT1:PHIGH","VOLT1:PLOW","VOLT1:PTP"

*RST state
"" (empty string = no functions defined)

Invalidates
-

Invalidated by
-

FORMat Subsystem
The FORMat subsystem sets a data format for transferring numeric and array
measurement data. This data format is used for response data by those commands that are
specifically designated to be affected by the FORMat subsystem.

Command Parameter Default Remark

Remote Control
Users Guide

4-26

Value/Unit

:FORMat

 [:DATA]

 :STATus

 :BORDer

 :TRANspose

ASCii | REAL | INTeger

 0 to 8 | 16 | 32 | 64

ASCii | INTeger , 8 | 16 | 32

NORMal | SWAPped

ON | OFF

ASCii

ASCii

NORMal

OFF

Default length for REAL is 64

Default length for INTeger is
16

Default length for INTeger is 8

Length only for INTeger

FORMat[:DATA] ASCii | INTeger | REAL, [0..8] | 16 | [32 | 64]

Description
Specifies the data format for transfer of the measured values from the instrument. This
command applies to all kinds of measured data: averaged measurements, memory
recordings, spectrum/FFT data, etc. If <length> is not specified, the instrument uses last
valid setting.
This command is coupled with FORMat[:DATA]:STATus. Change from ASCii (text)
format to REAL | INTeger (binary) format or vice versa using either FORMat[:DATA] or
FORMat[:DATA]:STATus will change both, the measurement data and status
information formats. These formats are always either both text or both binary. Last valid
length is used for indirectly changed format.

Parameter(s)
type
ASCii
Data is transferred as floating point value formatted into a string. Multiple ASCii data
values are separated by comma. Length specifies number of mantissa digits in scientific
notation.
If measurement status is error (8), the measurement value is NaN = +9.91E+37.
INTeger
Data is transferred as signed integer numbers of specified length in definite-length block
binary format.

#abbbb………….

One character (‘0’ – ‘9’)
specifying number of b
characters that give
number of data bytes

Number of data
bytes that will
immediately follow

Data bytes

INTeger data are in big-endian byte order by default. The byte order can be changed with
FORMat:BORDer command. INTeger data are supported by TRACe[:DATA]? query
only.
REAL

 Remote Control - Description of Commands
 Measurement Functions 4

 4-27

Data is transferred as floating point numbers of specified length in definite-length block
binary format.

#abbbb………….

One character (‘0’ – ‘9’)
specifying number of b
characters that give
number of data bytes

Number of data
bytes that will
immediately follow

Data bytes

REAL data are in big-endian byte order by default. The byte order can be changed with
FORMat:BORDer command.
length [bits]
0 to 8
Applies to ASCii. Length specifies number of mantissa digits in scientific notation. For
non-zero lengths the values are formated using C formatting string "%+.(length-1)e". A
<length> value of zero indicates that the device selects the number of significant digits to
be returned. Maximum length for ASCii is 8. Default length is 6.
16
Applies to INTeger. Specifies number of bits that represent the signed integer number.
32 | 64
Applies to REAL. Specifies the length of the binary representation of the floating point
number in bits (default is 64).
If measurement status is error (8), the measurement value is IEEE 754 NaN:
FORMat:BORDer SWAPped
REAL,32 = {0, 0, 0xC0, 0x7F}
REAL,64 = {0, 0, 0, 0, 0, 0, 0xF8, 0x7F}
FORMat:BORDer NORMal
REAL,32 = {0x7F, 0xC0, 0, 0}
REAL,64 = {0x7F, 0xF8, 0, 0, 0, 0, 0, 0}

Response
<type>,[<length>]

*RST state
ASCii,6

Example(s)
FORM ASC,6
FORM REAL,32
FORM? Response: REAL,64

Remote Control
Users Guide

4-28

Invalidates
FORMat[:DATA]:STATus

Invalidated by
FORMat[:DATA]:STATus

FORMat[:DATA]:STATus ASCii | INTeger, [8] | 16 | 32

Description
Specifies the format of the status information when transfering the measured values from
the instrument. Status information is an integer number.
This command applies to averaged measurements and memory recordings of averaged
data. If <length> is not specified, the instrument uses last valid setting.
This command is coupled with FORMat[:DATA]. Change from ASCii (text) format to
REAL | INTeger (binary) format or vice versa using either FORMat[:DATA] or
FORMat[:DATA]:STATus will change both, the measurement data and status
information formats. These formats are always either both text or both binary. Last valid
length is used for indirectly changed format.

Parameter(s)
ASCii
The status information is transferred as integer value formatted into a string. Multiple
status information values are separated by comma. Length is not valid for ASCii format
of status information.
INTeger,[8]|16|32
Status information value is transferred as binary integer of specified length. INTeger
status information values are in big-endian byte order. For default length of 8 bits the
length can be omitted.

Response
<type>,[<length>]

*RST state
ASCii

Example(s)
FORM:STAT ASC
FORM:STAT INT,8
FORM? Response: INT,8

Invalidates
FORMat[:DATA]

Invalidated by
FORMat[:DATA]

 Remote Control - Description of Commands
 Measurement Functions 4

 4-29

FORMat:BORDer NORMal | SWAPped

Description
Specifies whether the binary data transferred over the interface are in normal (Motorola)
or swapped (Intel) byte order.
This command applies to all kinds of binary measured data: averaged measurements,
memory recordings, spectrum/FFT data, etc.

Parameter(s)

NORMal Big endian data format (Motorola).

SWAPped Little endian data format (Intel).

Response
<format>

*RST state
NORMal

Example(s)
FORM:BORD SWAP
FORM:BORD? Response: SWAP

Invalidates
-

Invalidated by
-

FORMat:TRANspose ON | OFF

Description
This command applies to memory recordings (TRACe) and spectrum data output. The
data can be thought of as of a 2D array (matrix). This command selects whether to swap
rows and columns in the matrix.

Parameter(s)

ON If set to ON, values are grouped by measurement functions:

 all values of function 1, all values of function 2, ...

OFF If set to OFF, values are grouped by intervals/spectrum lines:

 all values from interval 1, all values from interval 2,...

*RST state
OFF

Remote Control
Users Guide

4-30

Example(s)
FORM:TRAN ON
FORM:TRAN? Response: ON

Invalidates
-

Invalidated by
-

Hardcopy Subsystem
The HARDCOpy subsystem contains commands to output the image of the instrument
screen.

Command Parameter Default

Value/Unit

Remark

:HCOPy

 :SDUMp

 :DATA?

query only

HCOPy:SDUMp:DATA?

Description
Returns screen dump data (in internal format accepted by PC program for instrument
screen transfer).

Parameter(s)
-

Reponse
Block of RLE encoded screen data

*RST state
-

Example(s)
HCOP:SDUM:DATA?
Response: Block of RLE encoded screen data

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-31

INITiate Subsystem
The INITiate subsystem controls the operation of the averaging capability of the
instrument. If memory recording is enabled, it also initiates the trigger/synchronization
subsystem. 3

Command Parameter Default

Value/Unit

Remark

:INITiate

 :CONTinuous

 [:IMMediate]

 :SEQuence1

 :NAME STARt

ON | OFF

ON

No query

INITiate:CONTinuous ON | OFF

Description
Controls the continuous state of the averaging capability. If set to on, the instrument
automatically starts new averaging cycle upon finishing the previous one.
INITiate:CONTinuous ON should be used for gap-free measurements.

Parameter(s)

ON Free-run mode. Instrument automatically starts new averaging cycle upon finishing the
previous one.

OFF Single-shot mode. Instrument performs one averaging cycle upon receipt of either
INIT[:IMMediate] or *TRG command. Instrument is then placed in the IDLE state again.

*RST state
ON

Example(s)
INIT:CONT ON
INIT:CONT? Response: 1

Invalidates
-

Invalidated by
-

INITiate[:IMMediate]

Description
Leaves the IDLE state and starts a single averaging cycle. After this averaging cycle is
complete, the instrument is placed in the IDLE state again. If the device is not in IDLE or
if INITiate:CONTinuous is set to ON, an IMM command shall have no effect and an
error -213 shall be generated.

Remote Control
Users Guide

4-32

Parameter(s)
-

*RST state
-

Example(s)
INIT

Invalidates
-

Invalidated by
-

INITiate[:IMMediate]:SEQuence1

INITiate[:IMMediate]:NAME STARt

Description
Initiates the memory acquisition start trigger. After initiation the pretrigger gets filled (if
> 0). Pretrigger is filled when "waiting for trigger" bit of OPER:STAT register is set to 1.
An alias for SEQuence1 is STARt.

Parameter(s)
-

*RST state
-

Example(s)
INITiate:NAME STARt

Invalidates
-

Invalidated by
-

INPut Subsystem
The INPut subsystem controls the characteristics of the input channels. Numeric suffixes
of the INPut node correspond to hardware input channel of the instrument. For 6 channel
models, the valid electrical channel suffixes are 1 to 6. For 12 channel models, the valid
electrical channel suffixes are 1 to 12. The electrical INPut subsystem does not
distinguish between current and voltage channels. Input filter settings are common for all
electrical channels, so the channel suffixes can be omitted, even if implemented for
compatibility reasons. If the channel suffix is omitted, the command applies to input 1.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-33

For Process Interface option, the valid mechanical channel suffixes are 21 to 24 (torque
input 1..4) and 25 to 28 (speed input 1..4). See section 2.1.10 SENSe2 Subsystem for
detailed description.

Command Parameter Default

Value/Unit

Remark

:INPut[1..12]

 :COUPling

 :GAIN

 :FILTer

 [:STATe]

 [:LPASs]

:FREQuency?

 :SHUNt

:INPut[21..28]

 :TYPE

AC | DC

0 to 1.0e12

ON | OFF

INTernal | EXTernal

DC

1.0

ON

Device
dependent

INTernal

Current channels only

Query only

Current channels only

INPut[1..12]:COUPling AC | DC

Description
Sets the input coupling of the selected input channel.

Parameter(s)

AC DC component is removed from the signal before any further processing. This coupling
compensates for any DC offsets on the signal.

DC Signal is left untouched and all it’s components are passed for further processing. This
coupling should be used for true RMS calculations.

*RST state
DC for all channels

Example(s)

INP1:COUP AC
INP2:COUP? Response: DC

Invalidates
-

Remote Control
Users Guide

4-34

Invalidated by
-

INPut[1|2|3|4|5|6|7|8|9|10|11|12]:GAIN <gain>

Description
Sets the shunt factor for the voltage current inputs. This setting applies when EXTernal
input shunt is selected. The even (voltage) channel numbers are available only on
instruments equipped with PP59/PP69 power phase.

Parameter(s)
1.0e-7 to 1.0e+7
This unitless gain factor specifies V/A conversion ratio of the external shunt connected to
the specified channel. Negative values are not allowed.

Response
<gain>

*RST state
1.0 for all channels

Example(s)
INP1:GAIN 10.0
INP3:GAIN? Response: 251.65

Invalidates
-

Invalidated by
-

INPut[1..12]:FILTer[:STATe] ON | OFF

Description
Turns the input antialiasing filters on or off. Filters on all channels are coupled, i.e.
enabling/disabling filter on one channel will enable/disable filters on all channels.

Parameter(s)

ON Anti-aliasing filter enabled.

OFF Anti-aliasing filter disabled.

*RST state
ON for all channels

Example(s)
INP:FILT ON

 Remote Control - Description of Commands
 Measurement Functions 4

 4-35

INP:FILT? Response: 1

Invalidates
-

Invalidated by
-

INPut[1..12]:FILTer[:LPASs]:FREQuency?

Description
Queries the antialiasing low-pass filter cutoff frequency. All input channels are equipped
with the same filters, so the returned value is always identical for all channels. The
antialiasing filter cutoff frequency can not be changed.

Response
<frequency> in Hz

*RST state
Device dependent for all channels.

Example(s)
INP:FILT:FREQ? Response: 300.0e3

Invalidates
-

Invalidated by
-

INPut[1|2|3|4|5|6|7|8|9|10|11|12]:SHUNt INTernal | EXTernal

Description
Selects the shunt used on current channel. The even (voltage) channel numbers are
available only on instruments equipped with PP59/PP69 power phase.

Parameter(s)

INTernal Internal shunts up to 10A are used.

EXTernal External shunt is connected. Shunt factor must be specified with command INPut:GAIN.

*RST state
INTernal for all channels

Example(s)
INP1:SHUN EXT
INP3:SHUNt? Response: INT

Remote Control
Users Guide

4-36

Invalidates
-

Invalidated by
-

INPut[21..28]:TYPe VOLTage | FREQuency (Option Process Interface)

Description
This command sets the input type to match the sensor type.

Parameter(s)

VOLTage DC signal in range of +/- 10 V is expected on the input.

FREQency AC signal with frequency in range 1 Hz to 200 kHz is expected on the input.

*RST state
FREQuency

Example(s)
INP21:TYP FREQ
INP21:TYP? Response: FREQ

Invalidates
-

Invalidated by
-

OUTPut Subsystem
The OUTPut subsystem controls the characteristic of the SYNC output.

Command Parameter Default

Value/Unit

Remark

:OUTPut9

 [:STATe]

ON | OFF

OFF

SYNC output

OUTPut9[:STATe] ON | OFF

Description
Sets the state of the synchronization output. Can only be set to ON if SYNC:SOURce is
not set to EXTernal.

Parameter(s)

ON The synchronization pulses are output at the rear sync input/output jack.

OFF No synchronization pulses are output.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-37

*RST state
OFF

Example(s)
OUTP9 ON
OUTP9? Response: 0

Invalidates
-

Invalidated by
SYNC:SOURce EXTernal

ROUTe Subsystem
The ROUTe subsystem selects the type of connection the instrument uses to measure on a
three phase system.

Command Parameter Default

Value/Unit

Remark

:ROUTe

 :SYSTem

“3W” | “2W”

“3W”

ROUTe:SYSTem “3W” | “2W”

Description
Selects the type of connection the instrument uses to measure on a three phase system.

Parameter(s)

“3W” Three-wattmeter configuration.

”2W” Two-wattmeter configuration.

*RST state
“3W”

Example(s)
ROUT:SYST “3W”
ROUT:SYST? Response: “3W”

Invalidates
-

Invalidated by
-

Remote Control
Users Guide

4-38

SENSe Subsystem
The SENSe subsystem controls the averaging capability of the instrument and calculation
of the basic averaged values. Numeric suffixes of the VOLTage|CURRent nodes
correspond to electrical phases. Channels of the INPut subsystem are combined into
phases of the SENSe:VOLTage|CURRent subsystem as shown in the table below.
If the channel suffix is omitted, the command applies to phase 1.

Input Channel

Suffix

Electrical Phase Sense Subsystem Phase Suffix

INPut1 (current)

INPut2 (voltage)

L1 SENSe:VOLTage|CURRent1

INPut3 (current)

INPut4 (voltage

L2 SENSe:VOLTage|CURRent2

INPut5 (current)

INPut6 (voltage)

L3 SENSe:VOLTage|CURRent3

INPut7 (current)

INPut8 (voltage)

L4 SENSe:VOLTage|CURRent4

INPut9 (current)

INPut10 (voltage)

L5 SENSe:VOLTage|CURRent5

INPut11 (current)

INPut12 (voltage)

L6 SENSe:VOLTage|CURRent6

Memory Recording
Commands to configure the memory recording use mandatory suffixes 1 and 2 after the
SWEep node.
[:SENSe]:SWEep1 Configures memory recording of sampled values (REALtime).
[:SENSe]:SWEep2 Configures memory recording of averaged values (AVERage).
The settings for memory recording of averaged and sampled values share the same
configuration space and therefore all of the settings must be set when changing from
averaged to sampled recording or vice versa. The [SENSe:]SWEep1|2[:STATe] OFF
commands reset the settings to default values except for triggers.
The SENSe node is the default node of the root level of the command tree. The default
node of the SENSe subsystem is POWer. All SENSe phase-related settings are common
to both AC and DC couplings, so the AC | DC node can be omitted assuming that DC is
used. The :AC[|:DC] node is implemented for compatibility reasons only.

Command Parameter Default

Value/Unit

Remark

[:SENSe]

 :CURRent[1..6]|VOLTage[1..6]

 :AC|[:DC]

 :RANGe

 Remote Control - Description of Commands
 Measurement Functions 4

 4-39

 [:UPPer]

 :AUTO

 :LIST?

 :SCALe

[:POWer[1..6]]|CURRent[1..6]|VOLTage[1..6]

 :AC|[:DC]

 :APERture

 [:TIME]

 :SWEep

 :FREQuency?

 :FUNCtion

 [:ON]

 :ALL

 :COUNt?

 OFF

 :ALL

 :CONCurrent

 :DATA?

 :STATus?

 :SWEep1|2

 :TIME

 :MAX?

 :POINTS?

 :OFFSet

 :TIME

 :POINTS?

 [:STATe]

 :COUNt

 :SFACtor

 :FUNCtion

0.3 to 1000 V

0.03 to 10

0.03 to 20V

ON | OFF | ONCE

0.9 to 1.0e+7

15.0e-3 to 3.6e3

list of sens func

ON | OFF

list of sens func

list of sens func

<value> | MAX

0 | <value> | MAX

ON | OFF

1 to 65535

1 to 65535

<function list>

- [V]

- [A]

- [V]

ON

1.0 [-]

0.3 s

device
dependent

“”

-

0

ON

“”

“”

OFF

1

1

VOLTage

CURRent with

INTernal shunt

CURRent with

EXTernal shunt

ONCE curr.
unimplemented

Query only

Query only

No query

Query only

Query only

Query only

Query only

Query only

Query only

Remote Control
Users Guide

4-40

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC[|:DC]:SCALe <value>

Description
Sets the voltage/current scaling factor that reflects conversion ratio of any voltage/
current transformers or dividers employed. Voltage or current on the specified channel is
multiplied by this scaling factor before any further processing. All signal quantities that
are calculated on the base of the current and/or voltage are scaled by this factor.

Parameter(s)
0.9 to 1.0e+7
Negative values are not allowed.

Example(s)
VOLT3:SCAL 10.0
CURR2:SCAL? Response: 10.0

*RST state
1.0

Invalidates
-

Invalidated by
-

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC|[:DC]:RANGe[:UPPer] <value>

Description
Sets the voltage/current range. The specified range is the the actual range of the
instrument’s input channel. Channel scaling factors and external shunts (INPut:GAIN)
are not included. This command sets RMS of the range, the actual peak range is two
times higher. Range value within the valid interval is rounded up to the next higher
possible value.

Parameter(s)
0.3 to 1000.0 V

0.03 to 10.0 A

0.03 to 10.0 V
Voltage channel range. Valid for voltage channels (2, 4, 6, 8, 10, 12).
Current channel range when INPut:SHUNt is set to INTernal. Valid for voltage channels
(1, 3, 5, 7, 9, 11).
Current channel range when INPut:SHUNt is set to EXTernal. The range is set by means
of voltage at the voltage input of the current channel. The actual current range in apms
can be obtained by multiplicating this value by INPut:GAIN for corresponding channel.
Valid for voltage channels (1, 3, 5, 7, 9, 11).

 Remote Control - Description of Commands
 Measurement Functions 4

 4-41

Example(s)
VOLT3:RANG 25.0
CURR2:RANG? Response: 3.0

*RST state
After reset autoranging is ON, so no fixed range is set.

Invalidates
[SENSe:]CURRent[1..6]|VOLTage[1..6]:RANGe:AUTO ON

Invalidated by
[SENSe:]CURRent[1..6]|VOLTage[1..6]:RANGe:AUTO ON

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC[|:DC]:RANGe:[:UPPer]:LIST?

Description
Queries a list of valid voltage/current ranges available on channel specified by the phase
suffix. The returned list contains the actual ranges of the instrument’s input channels.
Channel scaling factors and external shunts (INPut:GAIN) are not included. For current
channels the list is dependent on the actual setting of INPut:SHUNt (EXTernal or
INTernal).

Response
<range_list>
Comma separated range value list.

Example(s)
CURR2:RANG:LIST?
0.03, 0.1, 0.3, 1, 3, 10 (for setting INPut:SHUNt INTernal)

*RST state

Invalidates
-

Invalidated by
-

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC[|:DC]:RANGe[:UPPer]:AUTO
ON|OFF|ONCE

Description
Controls the voltage/current autoranging.

Remote Control
Users Guide

4-42

Parameter(s)

ON Autoranging is permanently ON. Monitoring of the STATus:OPERation register will
detect that the range is changed.

OFF Autoranging is permanently OFF.

ONCE ONCE is currently unimplemented

Example(s)
VOLT3:RANG:AUTO ON
CURR2:RANG:AUTO? Response: 0

*RST state
ON

Invalidates
[SENSe:]CURRent[1..6]|VOLTage[1..6]:RANGe[:UPPer]

Invalidated by
[SENSe:]CURRent[1..6]|VOLTage[1..6]:RANGe[:UPPer]

[SENSe:][:POWer[1..6]]|CURRent[1..6]|VOLTage[1..6]:AC[|:DC]:APERture[:TIME]
<avgtime>

Nominal averaging interval

Actual averaging interval

Signal on synchronization source (INP[1..12] or EXTernal

Description
Sets the nominal averaging interval. Query returns the set nominal averaging interval. In
synchronous mode the actual averaging interval is changing “on-the-fly”. The nominal
averaging interval is extended to next full signal period.
To query the actual averaging period, :SENSe:DATA? "TIME[:INTerval]" command
must be used.
If the nominal averaging interval is changed by this command, then the synchronization
timeout (SYNC:TIMeout) is set to the nominal averaging interval or 0.3 seconds,
whichever is greater.

Note
The [:POWer[1..6]]|CURRent[1..6]|VOLTage[1..6]:AC[|:DC] nodes are
implemented for SCPI compatibility only. The instrument works with only
one averaging interval for all averaged measurements.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-43

Parameter(s)
15ms ... 3600 s
Resolution is 1 ms.
The unit is seconds.

Example(s)
APER 0.2
APER? Response: 1.5

*RST state
0.3 s

Invalidates
SYNC:TIMeout

Invalidated by
-

[SENSe:]SWEep:FREQuency?

Description
Queries the sample rate of the instrument's ADCs. The sample rate is fixed and thus
cannot be changed.

Response
<sample_rate>
The actual sample rate the instrument is using to acquire the data. The sample rate is
common to all channels. The unit is Hz.

*RST state
Device dependent:
 Norma3000: 102.4 kHz
 Norma4000: 341.33 kHz or 1.024 MHz
 Norma5000: 341.33 kHz or 1.024 MHz

Example(s)
SWEep:FREQ? Response: 3.4133E+05

Invalidates
-

Invalidated by
-

Remote Control
Users Guide

4-44

[SENSe:]FUNCtion[:ON] <function>{,<function>}

Description
The FUNCtion[:ON] command selects the <function>(s) to be SENSed by the
instrument. The <function> is specified as a quoted string. For example: FUNCtion
“VOLTage:AC”. If CONCurrent is OFF, a single <function> is sent as the parameter.
This selects this function to be sensed. If more than one function is sent an error -108
(Parameter not allowed) is generated. If CONCurrent is ON, a comma separated list of
<sensor_function> may be sent as parameters. These functions are turned on, while the
state of other functions is changed to off. The query response of FUNCtion[:ON]? returns
a comma separated list of functions which are on, each of which are <STRING
RESPONSE DATA>. If no functions are ON, a null string is returned. The query returns
the short form mnemonics and omits any default nodes in the <function>.
This function list does not get saved with *SAV and is cleared with *RST.

Parameter(s)
<function>{,<function>}

Example(s)
FUNC "VOLT","CURR","POW"
FUNC? Response: "VOLT","CURR","POW"

*RST state
"" (empty string = no values defined)

Invalidates
[SENSe:]FUNCtion[:ON]:COUNt?

Invalidated by
[SENSe:]FUNCtion[:ON]:ALL
[SENSe:]FUNCtion:OFF:ALL
[SENSe:]FUNCtion:CONCurrent OFF
[SENSe:]DATA? <function>{,<function>}
[SENSe:]DATA:STATUS? <function>{,<function>}

[SENSe:]FUNCtion[:ON]:ALL

Description
This command turns ON all of the <sensor_function>s, which the instrument can
concurrently sense.

Example(s)
FUNC:ALL

*RST state
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-45

Invalidates
[SENSe:]FUNCtion[:ON]:COUNt?

Invalidated by
[SENSe:]FUNCtion[:ON]

[SENSe:]FUNCtion[:ON]:COUNt?

Description
This query returns the number of <sensor_function>s which are ON.

Response
<count> Number of averaged measurements that are currently configured.

*RST state
0

Example(s)
FUNC:COUN? Response: 3

Invalidates
-

Invalidated by
[SENSe:]FUNCtion[:ON]
[SENSe:]FUNCtion[:OFF]
[SENSe:]DATA? <function>{,<function>}
[SENSe:]DATA:STATUS? <function>{,<function>}
[SENSe:]FUNCtion:CONCurrent OFF

[SENSe:]FUNCtion:OFF:ALL

Description
This command turns OFF all of the <sensor_function>s, which the instrument can
concurrently sense.

Example(s)
FUNC:OFF:ALL

*RST state
-

Invalidates
[SENSe:]FUNCtion[:ON]:COUNt?

Remote Control
Users Guide

4-46

Invalidated by
[SENSe:]FUNCtion[:ON]

[SENSe:]FUNCtion:CONCurrent ON | OFF

Description
The CONCurrent command indicates whether the SENSor block should be configured to
SENSe one function at a time or SENSe more than one function at a time (concurrently).

Parameter(s)

ON If CONCurrent is ON, the function(s) specified as parameter(s) to the FUNCtion[:ON]
command are turned on, while the state of other functions is set to off.

OFF If CONCurrent is OFF, the FUNCtion[:ON] command acts as a one-of-n switch selecting
the indicated function to be the only sensed function.

Example(s)
FUNC:CONC ON
FUNC:CONC? Response: 1

*RST state
ON

Invalidates
[SENSe:]FUNCtion[:ON]:COUNt?
[SENSe:]FUNCtion[:ON]

Invalidated by
-

[SENSe:]DATA? [<function,function...>]

Description
Returns data in the format defined by the FORMAT commands. When there are no
arguments to this command: Number of returned values is equal to number of the
arguments to command SENSe:FUNCtion[:ON]. If SENSe:FUNCtion:CONCurrent is
OFF, only one function/measurement is allowed to be configured and returned. If set to
ON, multiple functions can be configured and queried for measurement results.

Parameter(s)
[<function>,<function>,...]

Response
<measurement_value>[,<measurement_value>,…]

*RST state
"" (empty string = no values defined)

 Remote Control - Description of Commands
 Measurement Functions 4

 4-47

Example(s)
DATA? "VOLT","CURR","POW" Response: 221.56,1.056,230.65

Invalidates
[SENSe:]FUNCtion[:ON]:COUNt?
[SENSe:]FUNCtion[:ON]

Invalidated by
-

[SENSe:]DATA:STATus? [<function,function...>]

Description
Returns averaged measurement(s) followed by the measurement status information. The
measurement status information indicates the validity of the measurement. The status
information is appended to the set of measured values. Number of status values is equal
to the number of returned measured values. The format of the status information is
controlled by the FORMat:STATus commands.

Parameter(s)
[<function>,<function>,...]
See SENSe:FUNCtion for detailed description of available functions.

Status Values
The returned status values are integers. The measurement status values are appended to
the end of the measurement results. The status value is bit mask integer and can be a
combination of one or more of the following values (bits) combined together using
logical OR operation:

0 Normal

Valid measurement, no questionable condition.

1 Underrange

The returned value is valid, but the signal amplitude is too low for the given range, so the
measurement precision is reduced.

2 Overrange

The instrument returns a measurement value, but the input signal amplitude is too high
for the given range and is clipped to an amplitude within the current range. Therefore the
returned value can be more or less outside the specification.

8 Undefined

The instrument was not able to calculate a valid value. This could be caused by e.g. loss
of synchronization (no valid frequency, harmonics, ...). The instrument returns an Not A
Number for the measurement.

16 Not available

The requested function is not or no longer available (e.g. option not installed, function
turned off). The instrument returns an Not A Number for the measurement.

Remote Control
Users Guide

4-48

128 Power Factor capacitive

For the Power Factor function this indicates capacitive phase difference between voltage
and current (0 = inductive).

For example, value of 3 represents both underrange and overrange condition.

Reponse
<measurement_value1>[,<measurement_value2>,…],
<measurement_status1>,[<measurement_status2>,…]

*RST state
"" (empty string = no values defined)

Example(s)
DATA:STATUS? "VOLT","CURR","POW"
Response: 221.56,1.056,230.65,0,0,0

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2:TIME <value> | MAX

Description
This command specifies maximum memory record length in seconds. This record length
includes pretrigger. If the synchronization is on, then the max. recording duration for
SWEep2 is directly dependent on exact number of averaging intervals that will be
recorded, which is calculated as specified record length / nominal averaging interval.

Parameter(s)
<value> | MAX

*RST state
MAX

Example(s)
SWE1:TIME 1.0
SWE1:TIME? Response: 1.0

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-49

[SENSe:]SWEep1|2:TIME:MAX?

Description
Returns maximum recording time in seconds according to current memory recording
settings (total amount of available memory, set of variables to record, sampling factor
and instrument's sampling frequency).

Response
<time>

*RST state
Maximum recording time according to *RST settings for memory recording.

Example(s)
SWE1:TIME:MAX?

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2:POINTS?

Description
Before recording is initiated or finished, this command returns max. number of points per
function that will be recorded. For synchronized SWEep2 (AVERage) recordings, this
value is calculated as:
Configured recording time / nominal averaging interval / sample factor
(SWEep2:TIME? / APER? / SWEep2:SFACtor?)
The actual max. number of points that will be recorded depends on the variations of
frequency of the measured signal.
Once the recording is finished, this command returns actual number of points per
function recorded.

Response
<count>

*RST state
Maximum available number of points. Depends on amount of available memory on the
instrument.

Example(s)
SWE1:POINTS?

Remote Control
Users Guide

4-50

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2:OFFSet:TIME <value> | MAX

Description
This command specifies pretrigger length in seconds.

Parameter(s)
<value> | MAX
Pretrigger length must be greater or equal to zero and smaller than the record length
specified with [SENSe:]SWEep1|2:TIME

*RST state
0.0

Example(s)
SWE1:OFFS:TIME 1.0

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2:OFFSet:POINTS?

Description
Before recording is initiated or finished, this command returns max. number of points per
function that will be recorded in pretrigger.
For synchronized SWEep2 (AVERage) recordings, this value is calculated as:
Configured pretrigger time / nominal averaging interval / sample factor
(SWEep2:OFFSet:TIME? / APER? / SWEep2:SFACtor?)
The actual max. number of points that will be recorded in pretrigger depends on the
variations of frequency of the measured signal.
Once the recording is finished, this command returns actual number of points per
function that was recorded in pretrigger.

Parameter(s)
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-51

Response
<count>

*RST state
0

Example(s)
SWE1:OFFS:POINTS? Response: 0

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2[:STATe] ON | OFF

Description
Enables / disables memory recording of sampled / averaged values. Only one of the
sweeps can be enabled at a time. Attempt to enable both sweeps will generate error -221
Settings conflict, i.e. SWEep1 (REALtime) and SWEep2 (AVERage) recordings can not
run at a time. Transition from OFF to ON clears the memory as if TRACe:DELete:ALL
was issued. Transition from ON to OFF resets all memory recording related settings
except triggers.

Parameter(s)

ON Enables memory recording.

OFF Disables memory recording.

Example(s)
SWE1 ON
SWE1? Response: 1

*RST state
OFF

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2:COUNt <count>

Description
Number of blocks to acquire.

Remote Control
Users Guide

4-52

Parameter(s)
1 to 65535 (currently only 1 is valid)

Example(s)
SWE1:COUN 1
SWE1:COUN? Response: 1

*RST state
1

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2:SFACtor

Description
This command sets sample factor. It specifies that every n-th value produced by the
[SENSe:]SWEep1|2 block gets saved into memory. If the sample factor specified would
generate a time between two stored samples that is greater than SENSe:SWEep1|2:TIME
or SENSe:SWEep1|2:OFFSet:TIME error -221 Settings conflict is generated.

Parameter(s)
1 to 65535
When sample factor is set to 1, all samples are stored.

*RST state
1

Example(s)
SWE1:SFAC 1

Invalidates
-

Invalidated by
-

[SENSe:]SWEep1|2:FUNCtion <function>{,<function>}

Description
Specifies function list for memory recording. The maximum number of functions is 20. If
the list exceeds device capability, the sample factor is automatically increased.
For SWEep1 (REALtime) function list only sampled values can be specified.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-53

For SWEep2 (AVERage) function list any functions from the standard instrument
function list can be specified.
The function list is stored in a saved configuration and is reloaded at PowerOn or with
*RCL.

Parameter(s)
<function>
SWEep1 (REALtime) valid functions:

VOLTage1..6[:DC]
CURRent1..6[:DC]
POWer1..6[:ACTive]
TORQue[1..4]
SPEed[1..4]
POWer[1..4]:MECHanical

SWEep2 (AVERage) valid functions:
Any functions from the standard instrument function list can be specified.

*RST state
“VOLTage1”

Example(s)
SWE1:FUNC “VOLT1”,”VOLT2”,”VOLT3”

Invalidates
-

Invalidated by
-

SENSe2 Subsystem (Option Process Interface)
The SENSe2 subsystem controls the settings of the optional Process Interface inputs.
Numeric suffixes of the TORQue|SPEed|POLepairs|TYPe|REFerence nodes correspond
to the index of the 4 motors/generators supported. Channels of the INPut subsystem are
combined into drive index of the SENSe2:xxx subsystem as shown in the table below.

Input Channel

Suffix

Drive
Index

Sense Subsystem Phase Suffix

INPut21 (torque)

INPut25 (speed)

1 SENSe2:TORQue|SPEed|POLepairs|TYPe|REFerence1[:POWer]

INPut22 (torque) 2 SENSe2:TORQue|SPEed|POLepairs|TYPe|REFerence2[:POWer]

Remote Control
Users Guide

4-54

INPut26 (speed)

INPut23 (torque)

INPut27 (speed)

3 SENSe2:TORQue|SPEed|POLepairs|TYPe|REFerence3[:POWer]

INPut24 (torque)

INPut28 (speed)

4 SENSe2:TORQue|SPEed|POLepairs|TYPe|REFerence4[:POWer]

Command Parameter Default

Value/Unit

Remark

:INPut[21..28]

 :TYPe

VOLTage | FREQuency

FREQuency

Analog/digital sensor

INPut[21..28]:TYPe VOLTage | FREQuency

Description
Selects the type of signal measured for a Process Interface input.

Parameter(s)

VOLTage Input signal is voltage.

FREQuency Input signal is frequency.

*RST state
FREQuency for all Process Interface inputs

Example(s)
INP21:TYP VOLT
INP25:TYP? Response: FREQ

Invalidates
-

Invalidated by
-
The SENSe2 node distinguishes the mechanical from the electrical system (SENSe1 for
the electrical system is the default node of the root level of the command tree). The
SENSe2:xxx:VOLTage nodes apply if the corresponding input type is set to
INPutx:TYPe VOLTage and SENSe2:xxx:FREQuency nodes apply if the corresponding
input type is set to INPutx:TYPe FREQuency respectively.

Command Parameter Default

Value/Unit

Remark

:SENSe2

 :TORQue[1..4]

 Remote Control - Description of Commands
 Measurement Functions 4

 4-55

 :VOLTage

 :SCALe

 :OFFSet

 [:VALue]

:IMMediate

 :FREQuency

 :SCALe

 :OFFSet

 [:VALue]

:IMMediate

-1e6 to 1e6

-1e6 to 1e6

-1e6 to 1e6

-1e6 to 1e6

1 [Nm/V]

0 [V]

0.001 [Nm/Hz]

10000 [Hz]

Analogue torque sensor

Input voltage for 0 [Nm]

Set offset from input value;
no query

Digital torque sensor

Input frequency for 0 [Nm]

Set offset from input value;
no query

Command Parameter Default

Value/Unit

Remark

:SENSe2

 :SPEed[1..4]

 :VOLTage

 :SCALe

[:DEFault]

 :OFFSet

 [:VALue]

:IMMediate

 :FREQuency

 :SCALe

[:DEFault]

 :PULSe

-1e6 to 1e6

-1e6 to 1e6

-1e6 to 1e6

1 [rpm/V]

0 [V]

60 [rpm/Hz]

1 [pul/rev]

Analogue speed sensor

Input voltage for 0 [rpm]

Set offset from input value;
no query

Digital torque sensor

Alternative setting

Remote Control
Users Guide

4-56

 :OFFSet

 [:VALue]

:IMMediate

 :TYPe[1..4]

 :POLepairs[1..4]

 :REFerence[1..4]

 [:POWer]

1 to 100000

-1e6 to 1e6

MOTor | GENerator

1 to 999

"POWer[1..6][:ACTive]"

0 [Hz]

MOTor

1

"POWer"

Input frequency for 0 [rpm]

Set offset from input value;
no query

For efficiency calculation

SENSe2:TORQue[1..4]:VOLTage:SCALe <value>

Description
Sets the torque scaling factor for voltage type input that reflects conversion ratio of
torque sensors employed. The difference between the voltage on the respective input and
the specified offset is multiplied by this scaling factor before any further processing.

Parameter(s)
-1.0e6 to 1.0e6
[Nm/V]

Example(s)
SENS2:TORQ3:VOLT:SCAL 10.0
SENS2:TORQ1:VOLT:SCAL? Response: 25.0

*RST state
1.0

Invalidates
-

Invalidated by
-

SENSe2:TORQue[1..4]:VOLTage:OFFSet[:VALue] <value>

Description
Sets the input voltage quantity that corresponds to torque zero values. This voltage is
subtracted from the measured voltage at the input before this difference is multiplied by
the scaling factor.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-57

Parameter(s)
-1.0e6 to 1.0e6
[V]

Example(s)
SENS2:TORQ3:VOLT:OFFS 0.0
SENS2:TORQ2:VOLT:OFFS? Response: 0.0

*RST state
0.0

Invalidates
-

Invalidated by
SENSe2:TORQue[1..4]:VOLTage:OFFSet:IMMediate

SENSe2:TORQue[1..4]:VOLTage:OFFSet:IMMediate

Description
Configure the currently measured torque voltage to be the offset value. The measurement
must be valid (no overload).

Parameter(s)
-

Example(s)
SENS2:TORQ3:VOLT:OFFS:IMM

*RST state
-

Invalidates
SENSe2:TORQue[1..4]:VOLTage:OFFSet

Invalidated by
-

SENSe2:TORQue[1..4]:FREQuency:SCALe <value>

Description
Sets the torque scaling factor for frequency type input that reflects conversion ratio of
torque sensors employed. The difference between the frequency on the respective input
and the specified offset is multiplied by this scaling factor before any further processing.

Remote Control
Users Guide

4-58

Parameter(s)
-1.0e6 to 1.0e6
[rpm/Hz]

Example(s)
SENS2:TORQ2:FREQ:SCAL 0.001
SENS2:TORQ1:FREQ:SCAL? Response: 0.001

*RST state
1.0

Invalidates
-

Invalidated by
-

SENSe2:TORQue[1..4]:FREQuency:OFFSet[:VALue] <value>

Description
Sets the input frequency quantity that corresponds to torque zero values. This frequency
is subtracted from the measured frequency at the input before this difference is multiplied
by the scaling factor.

Parameter(s)
-1.0e6 to 1.0e6
[Hz]

Example(s)
SENS2:TORQ3:FREQ:OFFS 1000.0
SENS2:TORQ2:FREQ:OFFS? Response: 1000.0

*RST state
0.0

Invalidates
-

Invalidated by
SENSe2:TORQue[1..4]:FREQuency:OFFSet:IMMediate

SENSe2:TORQue[1..4]:FREQuency:OFFSet:IMMediate

Description
Sets the torque frequency offset value from the currently measured value. The
measurement must be valid (no overload / undefined value).

 Remote Control - Description of Commands
 Measurement Functions 4

 4-59

Parameter(s)
-

Example(s)
SENS2:TORQ3:FREQ:OFFS:IMM

*RST state
-

Invalidates
SENSe2:TORQue[1..4]:FREQuency:OFFSet

Invalidated by
-

SENSe2:SPEed[1..4]:VOLTage:SCALe[:DEFault] <value>

Description
Sets the speed scaling factor for voltage type input that reflects conversion ratio of speed
sensors employed. The difference between the voltage on the respective input and the
specified offset is multiplied by this scaling factor before any further processing.

Parameter(s)
-1.0e6 to 1.0e6
[Nm/V]

Example(s)
SENS2:SPE3:VOLT:SCAL 10.0
SENS2:SPE1:VOLT:SCAL? Response: 25.0

*RST state
1.0

Invalidates
-

Invalidated by
-

SENSe2:SPEed[1..4]:VOLTage:OFFSet[:VALue] <value>

Description
Sets the input voltage quantity that corresponds to speed zero values. This voltage is
subtracted from the measured voltage at the input before this difference is multiplied by
the scaling factor.

Remote Control
Users Guide

4-60

Parameter(s)
-1.0e6 to 1.0e6
[V]

Example(s)
SENS2:SPE3:VOLT:OFFS 0.0
SENS2:SPE2:VOLT:OFFS? Response: 0.0

*RST state
0.0

Invalidates
-

Invalidated by
SENSe2:SPEed[1..4]:VOLTage:OFFSet:IMMediate

SENSe2:SPEed[1..4]:VOLTage:OFFSet:IMMediate

Description
Configure the currently measured speed voltage to be the offset value. The measurement
must be valid (no overload).

Parameter(s)
-

Example(s)
SENS2:SPEed3:VOLT:OFFS:IMM

*RST state
-

Invalidates
SENSe2:SPEed[1..4]:VOLTage:OFFSet[:VALue]

Invalidated by
-

SENSe2:SPEed[1..4]:FREQuency:SCALe[:DEFault] <value>

Description
Sets the speed scaling factor for frequency type input that reflects conversion ratio of
speed sensors employed. The difference between the frequency on the respective input
and the specified offset is multiplied by this scaling factor before any further processing.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-61

Parameter(s)
-1.0e6 to 1.0e6
[rpm/Hz]

Example(s)
SENS2:SPE2:FREQ:SCAL 0.001
SENS2:SPE1:FREQ:SCAL? Response: 0.001

*RST state
1.0

Invalidates
SENSe2:SPEed[1..4]:FREQuency:SCALe:PULS

Invalidated by
SENSe2:SPEed[1..4]:FREQuency:SCALe:PULS

SENSe2:SPEed[1..4]:FREQuency:SCALe:PULSe <value>

Description
Sets the speed scaling factor for frequency type input that reflects conversion ratio of
speed sensors employed. This alternative method allows the specification of a digital
speed sensor to be sent directly to the device. The corresponding offset value should be
set to zero.

Parameter(s)
1 to 100000
[pulses/revolution]

Example(s)
SENS2:SPE2:FREQ:SCAL:PULS 1024
SENS2:SPE1:FREQ:SCAL:PULS? Response: 256

*RST state
1

Invalidates
SENSe2:SPEed[1..4]:FREQuency:SCALe[:DEFault]

Invalidated by
SENSe2:SPEed[1..4]:FREQuency:SCALe[:DEFault]

Remote Control
Users Guide

4-62

SENSe2:SPEed[1..4]:FREQuency:OFFSet[:VALue] <value>

Description
Sets the input frequency quantity that corresponds to speed zero values. This frequency is
subtracted from the measured frequency at the input before this difference is multiplied
by the scaling factor.

Parameter(s)
-1.0e6 to 1.0e6
[Hz]

Example(s)
SENS2:SPE3:FREQ:OFFS 1000.0
SENS2:SPE2:FREQ:OFFS? Response: 1000.0

*RST state
0.0

Invalidates
-

Invalidated by
SENSe2:SPEed[1..4]:FREQuency:OFFSet:IMMediate

SENSe2:SPEed[1..4]:FREQuency:OFFSet:IMMediate

Description
Sets the speed frequency offset value from the currently measured value. The
measurement must be valid (no overload / undefined value).

Example(s)
SENS2:TORQ3:FREQ:OFFS:IMM

*RST state
-

Invalidates
SENSe2:SPEed[1..4]:FREQuency:OFFSet[:VALue]

Invalidated by
-

SENSe2:TYPe[1..4] MOTor | GENerator

Description
Sets the type of drive used. The setting affects calculation of slip and efficiency.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-63

Parameter(s)

MOTor Drive type set to motor.

GENerator Drive type set to generator.

Example(s)
SENS2:TYP1 MOT
SENS2:TYP3? Response: GEN

*RST state
MOT

Invalidates
-

Invalidated by
-

SENSe2:POLepairs[1..4] <value>

Description
Specifies the number of polepairs of the drive. This setting is used for slip calculation.

Parameter(s)
<value>
Valid Range: 1 to 999

Example(s)
SENS2:POL3 2
SENS2:POL1? Response: 1

*RST state
1

Invalidates
-

Invalidated by
-

SENSe2:REFerence[1..4][:POWer] <function>

Description
Specifies the measured electrical power used for efficiency calculation.

Remote Control
Users Guide

4-64

Parameter(s)
<function> can be any of the averaged active powers measured by the instrument:
"POWer[1..6|460][:ACTive]"

Example(s)
SENS2:REF3 "POW1"
SENS2:REF2? Response: "POW"

*RST state
"POW"

Invalidates
-

Invalidated by
-

SOURce Subsystem (Option Process Interface)
The SOURce subsystem controls the settings of the optional Process Interface analogue
outputs. Numeric suffixes of the VOLTage node correspond to the index of the 4 outputs
supported.

Command Parameter Default

Value/Unit

Remark

:SOURce

 :VOLTage[1..4]

 [:LEVel]

 [:IMMediate]

 [:AMPLitude]

 :MODE

 :FEED

 :GAIN

 :ZERO

-10.3 to 10.3

FIXed | VARiable

<function>

-1.0e6 to 1.0e6

-1.0e6 to 1.0e6

0.0 V

FIXed

VOLTage1

1.0 V/Ref unit

0.0 Ref unit

For FIXed mode only

For VARiable mode only

SOURce:VOLTage[1..4]:MODE FIXed | VARiable

Description
Selects the operating mode of the analogue outputs.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-65

Parameter(s)

FIXed The output voltage is directly specified by
SOURce:VOLTage[1..4][:LEVel][:IMMediate][AMPLitude] command.

VARiable After every measurement the output voltage is calculated from the FEEDed
measurement function using the specified GAIN and ZERO values.

*RST state
FIXed

Example(s)
SOUR:VOLT3:MODE VAR
SOUR:VOLT2:MODE? Response: FIX

Invalidates
-

Invalidated by
-

SOURce:VOLTage[1..4][:LEVel][:IMMediate][:AMPLitude] <value>

Description
Selects the output voltage for FIXed mode.

Parameter(s)
<value>
Valid Range: -10.3 to 10.3 V

*RST state
0.0

Example(s)
SOUR:VOLT4 5.3
SOUR:VOLT1? Response: -2.5

Invalidates
-

Invalidated by
-

SOURce:VOLTage[1..4]:FEED <function>

Description
Specifies the output reference function for VARiable mode.

Remote Control
Users Guide

4-66

Parameter(s)
<function>
Any valid averaged measurement function of the instrument.

*RST state
"VOLTage1"

Example(s)
SOUR:VOLT2:FEED "POW2:APP"
SOUR:VOLT4:FEED? Response: "CURR3:MEAN"

Invalidates
-

Invalidated by
-

SOURce:VOLTage[1..4]:GAIN <value>

Description
Specifies the scaling for the output. The difference between the actual value of the
reference function and the ZERO value is multiplied by this factor to calculate the output
voltage.

Parameter(s)
<gain>
Valid Range: -1.0e6 to 1.0e6 V/Ref unit

*RST state
1.0

Example(s)
SOUR:VOLT2:GAIN 5.0
SOUR:VOLT3:GAIN? Response: 1.0e-3

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-67

SOURce:VOLTage[1..4]:ZERO <value>

Description
Specifies the offset for the output. This value is subtracted from the actual value of the
reference function before this difference is multiplied by the GAIN setting to calculate
the output voltage.

Parameter(s)
<value>
Valid Range: -1.0e6 to 1.0e6 Ref unit

*RST state
0.0

Example(s)
SOUR:VOLT1:ZERO 225.0
SOUR:VOLT3:ZERO? Response: 50.0

Invalidates
-

Invalidated by
-

SYNC Subsystem
The SYNC subsystem controls the synchronization capability of the instrument. When
synchronization is enabled, the instrument adapts the averaging cycles to the frequency of
the signal fed to synchronization source. If memory recording of sampled data is in
operation, the synchronization signal can be used as a specific form of triggering.

Command Parameter Default

Value/Unit

Remark

:SYNC

 :STATe

 :LEVel

 :UNIT

[:SOURce]|VOLTage[1..6]|
 CURRent[1..6]|EXTern
al

 :LEVel

 :SLOPe

 :FILTer

ON | OFF

ABSolute | PCT

VOLTage[1..6]|CURRent[1..6]|
EXTernal

-150%...150% of range

POSitive | NEGative

ON

PCT

VOLTage1

0.0

POSitive

SOURce = current source
<curr. only SOURce node
is implemented>

Not for EXTernal

Remote Control
Users Guide

4-68

 [:LPASs]

 [:STATe]

:FREQuency

 :TIMeout

ON | OFF

1.0e2, 1.0e3, 1.0e4

0.015 to 3600.0

OFF

1.0e4 Hz

0.3 s

Not for EXTernal sourc

SYNC:STATe ON | OFF

Description
Sets whether the averaging interval is controlled by signal frequency on selected input or
not. If synchronization is turned on, the actual averaging period is kept to be a first
integer multiple of the sync signal greater than user-specified nominal averaging period.
If synchronization is turned off, the actual averaging period is equal to the user-specified
nominal averaging period rounded to integer multiple of sample periods.

Parameter(s)

ON Synchronization is required. The instrument will always attempt to synchronize to the
sync source signal frequency.

OFF Synchronization is disabled. Use this option for measurements on DC signals.

Example(s)
SYNC:STAT ON
SYNC:STAT? Response: 1

*RST state
ON

Invalidates
-

Invalidated by
-

SYNC:LEVel:UNIT ABSolute | PCT

Description
Sets the unit for SYNC[:SOURce]|VOLTage[1..6]|CURRent[1..6]:LEVel command.

Parameter(s)

ABSolute Level is specified in absolute units.

PCT Level is specified in percent of nominal input range.

Example(s)
SYNC:LEV:UNIT ABS
SYNC:LEVel:UNIT? Response: PCT

 Remote Control - Description of Commands
 Measurement Functions 4

 4-69

*RST state
PCT

Invalidates
SYNC:LEVel:UNIT

Invalidated by
-

SYNC[:SOURce] VOLTage[1..6] | CURRent[1..6] | EXTernal

Description
Selects the signal source for synchronization and frequency measurement.

Parameter(s)

VOLTage[1..6] One of the voltage channels is the sync source.

CURRent[1..6] One of the current channels is the sync source.

EXTernal External TTL sync input is the sync source.

Example(s)
SYNC:SOUR VOLT1
SYNC:SOUR? Response: VOLT1

*RST state
VOLTage1

Invalidates
SYNC[:SOUR]:AUTO

Invalidated by
SYNC[:SOUR]:AUTO

SYNC[:SOURce]|VOLTage[1..6]|CURRent[1..6]:LEVel <level>

Description
Sets the sync level at which the selected input signal period is measured by the
synchronization circuitry of the instrument. SYNC:SOURce:LEVel sets the sync level of
the active trigger source (not for EXTernal).
<currently only SOURce node is implemented>

Parameter(s)
<level>
Valid Range: -150% to 150%

Remote Control
Users Guide

4-70

Of nominal input range on the specified channel in IEEE 488.2 <NON-DECIMAL
NUMERIC PROGRAM DATA> format. The unit is selectable with command
SYNC:LEVel:UNIT.

Example(s)
SYNC:VOLT1:LEV 10.0
SYNC:VOLT1:LEV? Response: 0.0

*RST state
0.0

Invalidates
SYNC[:SOURce]:VOLTage[1..6]|CURRent[1..6]:LEVel:AUTO

Invalidated by
SYNC[:SOURce]:VOLTage[1..6]|CURRent[1..6]:LEVel:AUTO
[SENSe:]VOLTage[1..6]|CURRent[1..6]:AC[:|DC]:RANGe[:UPPer]
INPut[1|2|3|4|5|6|7|8|9|10|11|12]:SHUNt INPut[1|2|3|4|5|6|7|8|9|10|11|12]:GAIN
SYNC:LEVel:UNIT

SYNC[:SOURce]|VOLTage[1..6]|CURRent[1..6]:SLOPe POSitive | NEGative

Description
Sets the active slope of the synchronization signal.
<currently only SOURce node is implemented>

Parameter(s)

POSitive The instrument synchronizes on positive slope of the synchronization signal.

NEGative The instrument synchronizes on negative slope of the synchronization signal.

Example(s)
SYNC:SLOP POS
SYNC:SLOP? Response: POS

*RST state
POSitive

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-71

SYNC[:SOURce]|VOLTage[1..6]|CURRent[1..6]:FILTer:[LPASs[:STATe]] ON | OFF

Description
Controls the synchronization signal filter. The filtering is applied to the signal on input
channel that is selected as a synchronization source. This command has no effect if the
selected sync source is EXTernal.
<currently only SOURce node is implemented>

Parameter(s)

ON Filter is ON.

OFF Filter is OFF.

Example(s)
SYNC:FILT ON
SYNC:FILT? Response: 0

*RST state
OFF

Invalidates
-

Invalidated by
-

SYNC[:SOURce]|VOLTage[1..6]|CURRent[1..6]:FILTer:[LPASs]:FREQuency 10.0e3
| 1.0e3 | 100.0

Description
Sets the synchronization signal filter low pass frequency. This command has no effect if
the selected sync source is EXTernal. The frequency unit is Hz.
<currently only SOURce node is implemented>

Parameter(s)

10.0e3 10 kHz

1.0e3 1 kHz

100.0 100 Hz

Any other value between 100 Hz and 10 kHz will be coerced to next higher exact value.

Example(s)
SYNC:FILT:FREQ 100.0
SYNC:FILT:FREQ? Response: 1000.0

Remote Control
Users Guide

4-72

*RST state
10000.0

Invalidates
-

Invalidated by
-

SYNC:TIMeout <timeout> (reserved)

Description
Sets the synchronization timeout in seconds. Instrument will start averaging after the
timeout if no sync signal is available. Timeout is active only if synchronization is on. If
the nominal averaging interval is changed by
[SENSe:]{CURRent[1..6]|VOLTage[1..6]|[POWer]}:{AC|[DC]}:APERture[:TIME]
command, then the synchronization timeout is set to the nominal averaging interval or 0.3
seconds, whichever is greater.

Parameter(s)
0.015 to 3600 s

Example(s)
SYNC:TIMeout 5.0
SYNC:TIMeout? Response: 5.0

*RST state
0.3

Invalidates
-

Invalidated by
[SENSe:]{CURRent[1..6]|VOLTage[1..6]|[POWer]}:{AC|[DC]}:APERture[:TIME

TIMer Subsystem
The TIMer subsystem contains commands to control the instrument’s internal timer. This
timer provides timestamping information for averaged measurements.

Command Parameter Default

Value/Unit

Remark

:TIMer

 :RESet

 :AUTO

 :TIME?

ON | OFF

ON

-

No query

<curr. unimplemented>

Query only

 Remote Control - Description of Commands
 Measurement Functions 4

 4-73

TIMer:RESet

Description
Resets the internal timer of the instrument. The timer is used to measure memory
recording time and number of averaging cycles. When reset, both the timer's time and
averaging cycles counter are set to zero. The absolute time of last timer reset can be
obtained with command TIMer:RESet:TIME? If this command is sent when storing
averaged values into memory, the timing information will be inconsistent as the timer
will start counting from zero in the middle of data.
Timer is reset automatically at Power On (TIMer:RESet:TIME? Gives Power On time).

Example(s)
TIM:RES

*RST state
No reset condition

Invalidates
TIM:RES:TIME?

Invalidated by
-

TIMer:RESet:AUTO ON | OFF

Description
Controls whether the instrument's internal timer is reset automatically when ARMed. In
order to maintain absolute timebase for sequenced memory measurements,
TIMer:RESet:AUTO must be set to OFF, so that subsequent
INITiate[:IMMediate]:NAME:STARt commands do not reset the timer.
<currently unimplemented>

Parameter(s)

ON INITiate[:IMMediate]:NAME:STARt resets the timer.

OFF INITiate[:IMMediate]:NAME:STARt does not reset the timer.

Example(s)
TIM:RES:AUTO ON
TIM:RES:AUTO? Response: 1

*RST state
ON

Invalidates
TIM:RESet:TIME?

Remote Control
Users Guide

4-74

Invalidated by
-

TIMer:RESet:TIME?

Description
Queries the absolute time of the last timer reset.

Reponse
<year>,<month>,<day>,<hours>,<minutes>,<seconds>
Year is in four-digit numberic format. Hours are in 24 hour notation.

*RST state
Has no reset value

Example(s)
TIM:RES:TIME?

Invalidates
-

Invalidated by
-

TRACe Subsystem

The TRACe subsystem contains commands to

Command Parameter Default
Value/Unit

Remark

:TRACe

 :DATA

 :PREamble?

 :DATA?

 : SCALE?

 : OFFSet?

 :FREE?

 :CATalog

 : LENgth?

 :DELete

 :ALL

block

<block>, <number_of_points>,
<offset>,<sparsing>,<perf_opt_leve
l>

query only

query only

query only

query only

query only

query only

 Remote Control - Description of Commands
 Measurement Functions 4

 4-75

TRACe[:DATA]:PREamble? [<block>]

Description
Reads the data header for given block. If the <block> parameter is omitted, all headers
are sent.

Parameter(s)
<block> = 1
This optional parameter specifies the block from memory for which the preamble should
be returned.
Currently only one block can be recorded and thus the only valid value is 1.

Reponse
<points_per_func>, (integer)
Indicates amount of data recorded for each function.
<num_of_func>, (integer)
Number of functions configured for memory recording.
<trigger_index>, (integer)
Index of data point corresponding to trigger.
<first_point_time_relative_to_trigger>, (floating point number)
Time difference between the first recorded data point and trigger in seconds.
<record_duration>, (floating point number)
Indicates the time difference between the first and last recorded data point in seconds.
<trigger_time_relative_to_timer_reset_time>, (floating point number)
Indicates the length of the time interval between timer reset and trigger in seconds. The
trigger time, from which this value is derived, corresponds to the TIME:RELative
function value of data point that comes right before the data at index <trigger_index> (the
TIME:RELative values are timestamps when corresponding avg. intervals completed).
<average_time_between_two_points>, (floating point number)
Indicates sample interval in seconds. For SWEep1 (REALtime) recording and non-
synchronized SWEep2 (AVERage) recordings this value is the exact sample interval. For
synchronized SWEep2 (AVERage) recordings this value is an average sample interval
calculated as:
<record_duration> / <points_per_func>
The actual interval between individual subsequent samples depends on the variations of
frequency of the measured signal.

*RST state
0,0,0,0.00000E+00,0.00000E+00,0.00000E+00,0.00000E+00

Example(s)
TRAC:DATA:PRE?
Response: 0,0,0,0.00000E+00,0.00000E+00,0.00000E+00,0.00000E+00

Remote Control
Users Guide

4-76

Invalidates
-

Invalidated by
-

TRACe[:DATA]? [<block>[,<count>[,<offset>[,<sparsing>[,perf_opt_level]]]]]

Description
Reads data from memory.
For best performance, use raw binary output with 16-bit wide signed integer numbers
(FORMat[:DATA] INTeger,16), normal (instrument’s native) data byte ordering
(FORMat:BORDer NORMal) and points grouped by functions (FORMat:TRANspose
ON). Alternatively, you can use binary output with 32-bit wide floating-point numbers
(FORMat[:DATA] REAL,32) and normal (instrument’s native) data byte ordering
(FORMat:BORDer NORMal).
In case of raw 16-bit integer transfer, the following formula is used to obtain the real
values:

(
 (int16 - TRACe:DATA:OFFSet0?) * TRACe:DATA:SCALe0?
 - TRACe:DATA:OFFSet?
) * TRACe:DATA:SCALe?

Parameter(s)

<block> Specifies the block to read. When set to 0, all blocks are read. When set to 1, the first
acquired block is read, etc.

<count> Specifies number of points to read for specified block, starting at offset index.

<offset> Specifies the index of the acquired data point where to start the transfer.

<sparsing> Specifies that every n-th data point is transferred. When set to 1, all points are
transferred. When set to 2, every second point gets transferred.

<perf_opt_level> Specifies transfer performance optimization level:

 0 no optimization

> 0 std. optimizations

> 1 std. + I/O optimizations

If no parameters are specified, all recorded data are transferred. Parameters can be
omitted from right to left.
Defaults: <block>=1, <count>=all, <offset>=0, <sparsing>=1

Response
When FORMat:TRANspose is ON, values are grouped by functions:

 Remote Control - Description of Commands
 Measurement Functions 4

 4-77

<interval1>,<interval2>,<interval3>,..............<interval1>,<interval2>,<interval3>,….

func1 func2

When FORMat:TRANspose is OFF, values are grouped by intervals:

<func1>,<func2>,<func3>,.........<func1>,<func2>,<func3>,….

interval1 interval2

*RST state
There is no response to this command after reset.

Example(s)
TRAC:DATA? Response: 1.2345E+01,2.3456E+01,….

Invalidates
-

Invalidated by
-

TRACe[:DATA]:STATus? [<block>[,<count>[,<offset>[,<sparsing>]]]]

Description
Reads data and status from memory.
Data are returned first, then followed by the status information.
The measurement status information indicates the validity of the measurement. The status
information is appended to the set of measured values. Number of status values is equal
to the number of returned measured values. The format of the status information is
controlled by the FORMat:STATus commands.
For best performance, use binary output with 32-bit wide floating-point numbers
(FORMat[:DATA] REAL,32), normal (instrument’s native) data byte ordering
(FORMat:BORDer NORMal) and 8-bit wide integer status numbers
(FORMat[:DATA]:STATus INT,8).

Parameter(s)
See TRACe[:DATA]?.

Status Values
The returned status values are integers. The measurement status values are appended to
the end of the measurement results. The status value is bit mask integer and can be a
combination of one or more of the following values (bits) combined together using
logical OR operation:

Remote Control
Users Guide

4-78

0 Normal

Valid measurement, no questionable condition.

1 Underrange

The returned value is valid, but the signal amplitude is too low for the given range, so
the measurement precision is reduced.

2 Overrange

The instrument returns a measurement value, but the input signal amplitude is too high
for the given range. This causes the input signal to be clipped to an amplitude within
the current range. Because the measurement value is calculated from clipped sampled
data the returned value can be more or less outside the specification.

8 Undefined

The instrument was not able to calculate a valid value. This could be caused by e.g.
loss of synchronization (no valid frequency, harmonics, ...). The instrument returns an
Not A Number for the measurement.

16 Not available

The requested function is not or no longer available (e.g. option not installed, function
turned off). The instrument returns an Not A Number for the measurement.

128 Power Factor capacitive

For the Power Factor function this indicates capacitive phase difference between
voltage and current (0 = inductive).

Response
When FORMat:TRANspose is ON, values are grouped by functions:

 <interv1>,<interv2>,...<interv1>,<interv2>,... <interv1>,<interv2>,...<interv1>,<interv2>,…

func1 func2 func1 func2 ...

When FORMat:TRANspose is OFF, values are grouped by intervals:

<func1>,<func2>,...<func1>,<func2>,... <func1>,<func2>,...<func1>,<func2>,…

interval1 interval2 interval1 interval2 ...

data status

*RST state
There is no response to this command after reset.

Example(s)
TRAC:DATA:STAT? Response: 1.2345E+01,2.3456E+01,….,0,0,...

 Remote Control - Description of Commands
 Measurement Functions 4

 4-79

Invalidates
-

Invalidated by
-

TRACe[:DATA]:SCALe?

Description
Queries list of data transfer scaling factors for the measurement functions configured for
sampled memory recording (SWEep1:FUNCtion). The data transfer scaling factors are
used for data transferred in FORMat:DATA INT,16 output format. There are 2 levels of
data transfer scaling factors. 1st level is accessed using numeric suffix 0
(TRACe[:DATA]:SCALe0?), the 2nd level using no numeric suffix
(TRACe[:DATA]:SCALe?).

Response
<list_of_scaling_factors>
Comma separated value list.

Example(s)
TRAC:SCAL0?
+3.20439E-04,+3.20439E-04
TRAC:SCAL?
+1.00000E+00,+1.00000E+00

*RST state
-

Invalidates
-

Invalidated by
-

TRACe[:DATA]:OFFSet?

Description
Queries list of data transfer offsets for the measurement functions configured for sampled
memory recording (SWEep1:FUNCtion). The data transfer offsets are used for data
transferred in FORMat:DATA INT,16 output format. There are 2 levels of data transfer
offsets. 1st level is accessed using numeric suffix 0 (TRACe[:DATA]:OFFSet0?), the
2nd level using no numeric suffix (TRACe[:DATA]: OFFSet?).

Response
<list_of_offsets>
Comma separate value list.

Remote Control
Users Guide

4-80

Example(s)
TRAC:OFFS0?
+1.00000E+00,+1.00000E+00
TRAC: OFFS?
+1.00000E+00,+1.00000E+00

*RST state
-

Invalidates
-

Invalidated by
-

TRACe:FREE?

Description
Returns number of free bytes in memory.

Response
<bytes>

*RST state
Returns maximum available memory if no data is recorded. This value is instrument
dependent.

Example(s)
TRAC:FREE? Response: 4194176

Invalidates
-

Invalidated by
-

TRACe:CATalog:LENgth?

Description
Returns the actual number of blocks acquired in memory (only 1 is returned).

Response
<number_of_blocks>

*RST state
1

 Remote Control - Description of Commands
 Measurement Functions 4

 4-81

Example(s)
TRAC:CAT:LEN? Response: 1

Invalidates
-

Invalidated by
-

TRACe:DELete:ALL

Description
Delete all memory.

*RST state
This is an action, thus it has no reset state.

Example(s)
TRAC:DEL:ALL

Invalidates
TRACe:FREE?

Invalidated by
-

TRIGger Subsystem
The TRIGger subsystem contains commands to define condition of an averaged
measurement that will trigger an action. TRIGger subsystem has effect only if memory
recording is enabled.

Command Parameter Default
Value/Unit

Remark

:TRIGger

 :STARt

 :SOURce

 :TIME

 :LEVel

 :SLOPe

 :STOP

 :SOURce

 :TIME

 :LEVel

 :SLOPe

BUS | TIME | IMMediate | MANual

| SYNC | <function>

yyyy,mm,dd,hh,mm,ss

value

POSitive | NEGative

TIME | IMMediate | MANual

| <function>

yyyy,mm,dd,hh,mm,ss

<value>

POSitive | NEGative

IMMediate

0.0

POSitive

IMMediate

0.0

POSitive

Remote Control
Users Guide

4-82

TRIGger:STARt:SOURce BUS | TIME | IMMediate | MANual | SYNC | <function>

Description
Specifies the start trigger source.

Parameter(s)

BUS Will trigger when a *TRG command is received

TIME Will trigger at exact time

IMMediate No waiting for an event occurs.

MANual The signal is user-generated by pressing the front panel "MEM" key.

SYNC Trigger occurs whenever an edge of the synchronization signal is detected. This source
is valid only for REALtime sweep (to use the EXTernal signal jack as a trigger the
SYNC source must be set to EXTernal).

<function> Condition on an averaged measurement function causes the trigger.

*RST state
IMM

Example(s)
TRIG:STAR:SOUR IMM
TRIG:STAR:SOUR? Response: IMM

Invalidates
-

Invalidated by
-

TRIGger:STARt:TIME <yyyy,MM,dd,hh,mm,ss>

Description
The memory recording will start when the instrument’s internal time reaches the
specified value.

Parameter(s)

yyyy Year

MM Month

dd Day

hh Hours in 24 hour notation

mm Minutes

ss Seconds (integer value)

 Remote Control - Description of Commands
 Measurement Functions 4

 4-83

*RST state
1970,1,1,0,0,0

Example(s)
TRIG:STAR:TIME 2002,01,01,11,00,00
TRIG:STAR:TIME? Response: 2002,01,01,11,00,00

Invalidates
-

Invalidated by
-

TRIGger:STARt:LEVel <level>

Description
When the start source for recording is an averaged measurement function, then this
setting specifies the measurement function level that will trigger the recording.

Parameter(s)

POSitive Triggers on positive slope.

NEGative Triggers on negative slope.

*RST state
POS

Example(s)
TRIG:STAR:SLOP POS
TRIG:STAR:SLOP? Response: POS

Invalidates
-

Invalidated by
-

TRIGger:STOP:SOURce TIME | IMMediate | MANual | <function>

Description
Stop trigger source. The acquisition will stop either at specified date/time, when memory
is full, recording time is reached, or the selected stop condition below is met, whichever
comes first.

Remote Control
Users Guide

4-84

Parameter(s)

TIME The acquisition will stop when either memory is full, recording time reached or at
specified date/time, whichever comes first.

IMMediate No additional stop condition is set. The acquisition will stop when either memory is full
or recording time is reached, whichever comes first.

MANual The acquisition will stop when either memory is full, recording time reached or front
panel MEM key is pressed, whichever comes first. To stop the memory recording
immediately, turn off the memory subsystem.

<function> The acquisition will stop when either memory is full, recording time is reached, or
condition on selected function is met, whichever comes first.

*RST state
MAN

Example(s)
TRIG:STOP:SOUR MAN
TRIG:STOP:SOUR? Response: MAN

Invalidates
-

Invalidated by
-

TRIGger:STOP:TIME <yyyy,MM,dd,hh,mm,ss>

Description
The memory recording will stop when the instrument’s internal time reaches the specified
value.

Parameter(s)

yyyy Year

MM Month

dd Day

hh Hours in 24 hour notation

mm Minutes

ss Seconds (integer value)

*RST state
1970,1,1,0,0,0

 Remote Control - Description of Commands
 Measurement Functions 4

 4-85

Example(s)
TRIG:STOP:TIME 2002,01,01,11,00,00
TRIG: STOP:TIME? Response: 2002,01,01,11,00,00

Invalidates
-

Invalidated by
-

TRIGger:STOP:LEVel <level>

Description
When the stop source for recording is an averaged measurement function, then this
setting specifies the measurement function level that will stop the recording.

Parameter(s)
<level>
Range for this setting is not defined.

*RST state
0.0

Example(s)
TRIG:STOP:LEV 50.0
TRIG:STOP:LEV? Response: 25.0

Invalidates
-

Invalidated by
-

TRIGger:STOP:SLOPe POSitive | NEGative

Description
When the start source for recording is an averaged measurement function, then this
setting specifies the slope.

Parameter(s)

POSitive Stops recording on positive slope.

NEGative Stops recording on negative slope.

*RST state
POS

Remote Control
Users Guide

4-86

Example(s)
TRIG:STOP:SLOP POS
TRIG:STOP:SLOP? Response: POS

Invalidates
-

Invalidated by
-

SYSTem Subsystem
In this system, a number of commands for general functions which are not immediately
related to power analysis, are combined.

Command Parameter Default
Value/Unit

Remark

:SYSTem

 :COMMunicate

 :GPIB

 [:SELF]

 :ADDRess

 :SERial

 :BAUD

 :BITS

 :SBITs

 :CONTrol

 :RTS

 :PACE

 :PARity

 :DATE

 :TIME

 :ERRor

 [:NEXT]?

 :ALL?

 :KLOCk

 :LANGuage

 :VERSion?

1 to 30

1200 | 2400 | 4800 | 9600 | 19200 |
38400 | 57600 | 115200

7 | 8

1 | 2

ON | IBFull | RFR

XON | NONE

EVEN | ODD | ZERO | ONE |
NONE | IGNore

Year,month,day

Hours,minutes,seconds

ON | OFF | REMote

"DEFault" | "D5255S"

| "D5255T" | "D5255M"

5

115200 bd

8 bits

1 bit

RFR

NONE

NONE

OFF

"DEFault"

<curr. unimplemented>

<curr. unimplemented>

<curr. unimplemented>

<curr. unimplemented>

<curr. unimplemented>

Query only

Query only

Query only

 Remote Control - Description of Commands
 Measurement Functions 4

 4-87

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <addr>

Description
Sets the primary address of the optional GPIB interface.

Parameter(s)
1 to 30

Response
<addr>

*RST state
Not affected by *RST

Example(s)
SYST:COMM:GPIB:ADDR 10
SYST:COMM:GPIB:ADDR? Response: 5

Invalidates
-

Invalidated by
-

SYSTem:COMMunicate:SERial:BAUD <value>

Description
Sets the baud rate of the RS232 interface.

Parameter(s)
1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200

Response
<value>

*RST state
Not affected by *RST

Example(s)
SYST:COMM:SER:BAUD 9600
SYST:COMM:SER:BAUD? Response: 115200

Invalidates
-

Remote Control
Users Guide

4-88

Invalidated by
-

SYSTem:DATE <year>,<month>,<day>

Description
Sets the internal instrument's clock date.

Parameter(s)

<year> Must be <numeric_value>. The year is in four-digit numeric format.

<month> Must be <numeric_value>. Its range is 1 to 12 inclusive. The number 1 corresponds to
the month January, 2 to February, and so on.

<day> Must be <numeric_value>. Its range is 1 to number of days in the month from the
previous parameter.

*RST state
Not affected by reset.

Example(s)
SYST:DATE 2001,2,5
SYST:DATE? Response: 2001,2,5

Invalidates
-

Invalidated by
-

SYSTem:TIME <hours>,<minutes>,<seconds>

Description
Sets the internal instrument's clock time.

Parameter(s)

<hours> Must be <numeric_value>. The hours are in 24 hour notation.

<minutes> Must be <numeric_value>. Its range is 0 to 59 inclusive.

<seconds> Must be <numeric_value>. Its range is 0 to 59 inclusive.

*RST state
Not affected by reset.

Example(s)
SYST:TIME 15,45,23
SYST:TIME? Response: 15,45,23

 Remote Control - Description of Commands
 Measurement Functions 4

 4-89

Invalidates
-

Invalidated by
-

SYSTem:ERRor[:NEXT]?

Description
Queries the error/event queue for the next item and removes it from the queue. The
response returns the full queue item consisting of an integer and a string. If no errors are
in the queue 0,"No error" is returned.

Response
<code>,<text description>

*RST state
Not affected by reset.

Example(s)
SYST:ERR? Response: -100,"Command Error"

Invalidates
-

Invalidated by
-

SYSTem:ERRor:ALL?

Description
Queries the error/event queue for all items and removes them from the queue. The
response returns a semicolon-separated list of full queue items consisting of integer /
string pairs. If no errors are in the queue 0,"No error" is returned.

Response
<code>,<text description>[;<code>,<text description>[; …]]

*RST state
Not affected by reset.

Example(s)
SYST:ERR:ALL?
 Response: -102,"Syntax Error";-113,"Undefined Header"

Invalidates
-

Remote Control
Users Guide

4-90

Invalidated by
-

SYSTem:KLOCk ON | OFF | REMote

Description
This command locks the local controls of an instrument. This includes any front panel,
keyboard, or other local interfaces.

Parameter(s)

ON All front panel controls are locked.

OFF All front panel controls can be operated by user.

REMote All front panel controls except F6/Esc are locked when a remote control command is
received.

*RST state
OFF

Example(s)
SYST:KLOC ON
SYST:KLOC? Response: 1

Invalidates
-

Invalidated by
-

SYSTem:LANGuage "DEFault" | "D5255S" | "D5255T" | "D5255M"

Description
Switches to different command language. The standard SCPI command set is understood
at all times.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-91

Parameter(s)

"DEFault" Standard SCPI command set.

"D5255S" Legacy command set used by Norma D5255 Standard.

"D5255T" Legacy command set used by Norma D5255 Transformer / Rectified Mean.

"D5255M" Legacy command set used by D5255 Motor.

*RST state
"DEFault"

Example(s)
SYST:LANGuage "D5255S"

Invalidates
-

Invalidated by
-

SYSTem:VERSion?

Description
This query returns an <NR2> formatted numeris value corresponding to the SCPI version
number for which the instrument complies. The response has the form YYYY.V where
Ys represent the year-version (e.g. 1990) and the V represents an approved revision
number for that year.

Response
<version>

*RST state
Not affected by reset.

Example(s)
SYST:VERS? Response: 1999.0

Invalidates
-

Invalidated by
-

Remote Control
Users Guide

4-92

STATus Subsystem
The STATus subsystem contains the commands for the status reporting system (see
section “Status Reporting System"). *RST does not influence the status registers.

Command Parameter Default

Value/Unit

Remark

STATus

 :OPERation

 [:EVENt]?

 :CONDition?

 :ENABle

 :PTRansition

 :NTRansition

 :QUEStionable

 [:EVENt]?

 :CONDition?

 :ENABle

 :PTRansition

 :NTRansition

 :VOLTage

 [:EVENt]?

 :CONDition?

 :ENABle

 :PTRansition

 :NTRansition

 :CURRent

 [:EVENt]?

 :CONDition?

 :ENABle

 :PTRansition

 :NTRansition

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

0 to 65535

Query only

Query only

Query only

Query only

Query only

Query only

Query only

Query only

STATus:QUEStionable:VOLTage:CONDition?

Description
Returns the contents of the condition register associated with the status structure defined
in the command. Reading the condition register is nondestructive. The response is (NR1
NUMERIC RESPONSE DATA) (range: 0 through 32767).

 Remote Control - Description of Commands
 Measurement Functions 4

 4-93

Response
<value> is a 16 bit integer number in decimal notation.

bits 0 to 5 Voltage channels (1, 3, 5, 7, 9, 11) overload.

bits 8 to 13 Voltage channels (1, 3, 5, 7, 9, 11) underload.

*RST state
Has no effect.

Example(s)
STAT:QUES:VOLT:COND? Response: 2 (voltage overload on phase 2)

Invalidates
-

Invalidated by
-

STATus:QUEStionable:VOLTage:PTRansition <value>

Description
Sets the positive transition filter. Setting a bit in the positive transition filter shall cause a
0 to 1 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event register. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bits 0 to 5 Voltage channels (1, 3, 5, 7, 9, 11) overload positive transition.

bits 8 to 13 Voltage channels (1, 3, 5, 7, 9, 11) underload positive transition.

*RST state
0

Example(s)
STAT:QUES:VOLT:PTR 16191
STAT:QUES:VOLT:PTR? Response: 16191

Invalidates
-

Invalidated by
-

Remote Control
Users Guide

4-94

STATus:QUEStionable:VOLTage:NTRansition <value>

Description
Sets the negative transition filter. Setting a bit in the negative transition filter shall cause a
0 to 1 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event register. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bits 0 to 5 Voltage channels (1, 3, 5, 7, 9, 11) overload negative transition.

bits 8 to 13 Voltage channels (1, 3, 5, 7, 9, 11) underload negative transition.

*RST state
0

Example(s)
STAT:QUES:VOLT:NTR 16191
STAT:QUES:VOLT:NTR? Response: 16191

Invalidates
-

Invalidated by
-

STATus:QUEStionable:VOLTage[:EVENt]?

Description
This query returns the contents of the event register associated with the status structure
defined in the command. The response is (NR1 NUMERIC RESPONSE DATA) (range:
0 through 32767) . Note that reading the event register clears it.

Response
<value> is a 16 bit integer number in decimal notation.

bits 0 to 5 Voltage channels (1, 3, 5, 7, 9, 11) overload event

bits 8 to 13 Voltage channels (1, 3, 5, 7, 9, 11) underload event.

*RST state
Has no effect.

Example(s)
STAT:QUES:VOLT? Response: 2 (voltage overload on phase 2)

Invalidates
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-95

Invalidated by
-

STATus:QUEStionable:VOLTage:ENABle <value>

Description
Sets the enable mask which allows true conditions in the event register to be reported in
the summary bit. If a bit is 1 in the enable register and its associated event bit transitions
to true, a positive transition will occur in the associated summary bit. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bits 0 to 5 Voltage channels (1, 3, 5, 7, 9, 11) enable overload event.

bits 8 to 13 Voltage channels (1, 3, 5, 7, 9, 11) enable underload event.

*RST state
0

Example(s)
STAT:QUES:VOLT:ENAB 16191
STAT:QUES:VOLT:ENAB? Response: 16191

Invalidates
-

Invalidated by
-

STATus:QUEStionable:CURRent:CONDition?

Description
Returns the contents of the condition register associated with the status structure defined
in the command. Reading the condition register is nondestructive. The response is (NR1
NUMERIC RESPONSE DATA) (range: 0 through 32767).

Response
<value> is a 16 bit integer number in decimal notation.

bits 0 to 5 Current channels (0, 2, 4, 6, 8, 10) overload.

bits 8 to 13 Current channels (0, 2, 4, 6, 8, 10) underload.

*RST state
Has no effect.

Example(s)
STAT:QUES:CURR:COND? Response: 2 (current overload on phase 2)

Remote Control
Users Guide

4-96

Invalidates
-

Invalidated by
-

STATus:QUEStionable:CURRent:PTRansition <value>

Description
Sets the positive transition filter. Setting a bit in the positive transition filter shall cause a
0 to 1 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event register. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bits 0 to 5 Current channels (0, 2, 4, 6, 8, 10) overload positive transition.

bits 8 to 13 Current channels (0, 2, 4, 6, 8, 10) underload positive transition.

*RST state
0

Example(s)
STAT:QUES:CURR:PTR 16191
STAT:QUES:CURR:PTR? Response: 16191

Invalidates
-

Invalidated by
-

STATus:QUEStionable:CURRent:NTRansition <value>

Description
Sets the negative transition filter. Setting a bit in the negative transition filter shall cause a
0 to 1 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event register. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bits 0 to 5 Current channels (0, 2, 4, 6, 8, 10) overload negative transition.

bits 8 to 13 Current channels (0, 2, 4, 6, 8, 10) underload negative transition.

*RST state
0

 Remote Control - Description of Commands
 Measurement Functions 4

 4-97

Example(s)
STAT:QUES:CURR:NTR 16191
STAT:QUES:CURR:NTR? Response: 16191

Invalidates
-

Invalidated by
-

STATus:QUEStionable:CURRent[:EVENt]?

Description
This query returns the contents of the event register associated with the status structure
defined in the command. The response is (NR1 NUMERIC RESPONSE DATA) (range:
0 through 32767). Note that reading the event register clears it.

Response
<value> is a 16 bit integer number in decimal notation.

bits 0 to 5 Current channels (0, 2, 4, 6, 8, 10) event.

bits 8 to 13 Current channels (0, 2, 4, 6, 8, 10) event.

*RST state
Has no effect.

Example(s)
STAT:QUES:CURR? Response: 2 (current overload on phase 2)

Invalidates
-

Invalidated by
-

STATus:QUEStionable:CURRent:ENABle <value>

Description
Sets the enable mask which allows true conditions in the event register to be reported in
the summary bit. If a bit is 1 in the enable register and its associated event bit transitions
to true, a positive transition will occur in the associated summary bit. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bits 0 to 5 Current channels (0, 2, 4, 6, 8, 10) enable overload event.

bits 8 to 13 Current channels (0, 2, 4, 6, 8, 10) enable underload event.

Remote Control
Users Guide

4-98

*RST state
0

Example(s)
STAT:QUES:CURR:ENAB 16191
STAT:QUES:CURR:ENAB? Response: 16191

Invalidates
-

Invalidated by
-

STATus:QUEStionable:CONDition?

Description
Returns the contents of the condition register associated with the status structure defined
in the command. Reading the condition register is nondestructive. The response is (NR1
NUMERIC RESPONSE DATA) (range: 0 through 32767).

Response
<value> is a 16 bit integer number in decimal notation.

bit 0 Voltage summary questionable.

bit 1 Current summary questionable.

bit 5 Frequency questionable.

*RST state
Has no effect.

Example(s)
STAT:QUES:COND?
Response: 1 (voltage over/underload on some phase)

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 Measurement Functions 4

 4-99

STATus:QUEStionable:PTRansition <value>

Description
Sets the positive transition filter. Setting a bit in the positive transition filter shall cause a
0 to 1 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event register. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bit 0 Voltage summary questionable.

bit 1 Current summary questionable.

bit 5 Frequency questionable.

*RST state
0

Example(s)
STAT:QUES:PTR 35
STAT:QUES:PTR? Response: 35

Invalidates
-

Invalidated by
-

STATus:QUEStionable:NTRansition <value>

Description
Sets the negative transition filter. Setting a bit in the negative transition filter shall cause a
0 to 1 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event register. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bit 0 Voltage summary questionable.

bit 1 Current summary questionable.

bit 5 Frequency questionable.

*RST state
0

Remote Control
Users Guide

4-100

Example(s)
STAT:QUES:NTR 35
STAT:QUES:NTR? Response: 35

Invalidates
-

Invalidated by
-

STATus:QUEStionable[:EVENt]?

Description
This query returns the contents of the event register associated with the status structure
defined in the command. The response is (NR1 NUMERIC RESPONSE DATA) (range:
0 through 32767) . Note that reading the event register clears it.

Response
<value> is a 16 bit integer number in decimal notation.

bit 0 Voltage summary questionable.

bit 1 Current summary questionable.

bit 5 Frequency questionable.

*RST state
Has no effect.

Example(s)
STAT:QUES? Response: 1 (voltage overload/underload on some phase)

Invalidates
-

Invalidated by
-

STATus:QUEStionable:ENABle <value>

Description
Sets the enable mask which allows true conditions in the event register to be reported in
the summary bit. If a bit is 1 in the enable register and its associated event bit transitions
to true, a positive transition will occur in the associated summary bit. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bit 0 Voltage summary questionable.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-101

bit 1 Current summary questionable.

bit 5 Frequency questionable.

*RST state
0

Example(s)
STAT:QUES:ENAB 35
STAT:QUES:ENAB? Response: 35

Invalidates
-

Invalidated by
-

STATus:OPERation:CONDition?

Description
Returns the contents of the condition register associated with the status structure defined
in the command. Reading the condition register is nondestructive. The response is (NR1
NUMERIC RESPONSE DATA) (range: 0 through 32767).

Response

bit 2 Ranging (changing range).

bit 3 Sweeping (memory recording in progress).

bit 5 Waiting for trigger.

bit 8 Synchronized (if sync source changes, there is a glitch).

bit 10 Averaging (averaging in progress, at the end of each averaging cycle, there is a glitch).

bit 12 Spectrum CALCulation in progress.

*RST state
Has no effect.

Example(s)
STAT:OPER:COND? Response: 1280 (synchronized & averaging)

Invalidates
-

Invalidated by
-

Remote Control
Users Guide

4-102

STATus:OPERation:PTRansition <value>

Description
Sets the positive transition filter. Setting a bit in the positive transition filter shall cause a
0 to 1 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event.

Parameter(s)

bit 2 Ranging (changing range).

bit 3 Sweeping (memory recording in progress).

bit 5 Waiting for trigger.

bit 8 Synchronized (if sync source changes, there is a glitch).

bit 10 Averaging (averaging in progress, at the end of each averaging cycle, there is a glitch).

bit 12 Spectrum CALCulation in progress.

*RST state
0

Example(s)
STAT:OPER:PTR 5948
STAT:OPER:PTR? Response: 5948

Invalidates
-

Invalidated by
-

STATus:OPERation:NTRansition <value>

Description
Sets the negative transition filter. Setting a bit in the negative transition filter shall cause a
1 to 0 transition in the corresponding bit of the associated condition register to cause a 1
to be written in the associated bit of the corresponding event.

 Remote Control - Description of Commands
 Measurement Functions 4

 4-103

Parameter(s)

bit 2 Ranging (changing range).

bit 3 Sweeping (memory recording in progress).

bit 5 Waiting for trigger.

bit 8 Synchronized (if sync source changes, there is a glitch).

bit 10 Averaging (averaging in progress, at the end of each averaging cycle, there is a glitch).

bit 12 Spectrum CALCulation in progress.

*RST state
0

Example(s)
STAT:OPER:NTR 5948
STAT:OPER:NTR? Response: 5948

Invalidates
-

Invalidated by
-

STATus:OPERation[:EVENt]?

Description
This query returns the contents of the event register associated with the status structure
defined in the command. The response is (NR1 NUMERIC RESPONSE DATA) (range:
0 through 32767) . Note that reading the event register clears it.

Response
<value> is a 16 bit integer number in decimal notation.

bit 2 Ranging (changing range).

bit 3 Sweeping (memory recording in progress).

bit 5 Waiting for trigger.

bit 8 Synchronized (if sync source changes, there is a glitch).

bit 10 Averaging (averaging in progress, at the end of each averaging cycle, there is a glitch).

bit 12 Spectrum CALCulation in progress.

*RST state
Has no effect.

Example(s)
STAT:OPER? Response: 2 (changing range)

Remote Control
Users Guide

4-104

Invalidates
-

Invalidated by
-

STATus:OPERation:ENABle <value>

Description
Sets the enable mask which allows true conditions in the event register to be reported in
the summary bit. If a bit is 1 in the enable register and its associated event bit transitions
to true, a positive transition will occur in the associated summary bit. The command
accepts parameter values of either format in the range 0 through 65535 (decimal) without
error. The query response format is <NR1>.

Parameter(s)

bit 2 Ranging (changing range).

bit 3 Sweeping (memory recording in progress).

bit 5 Waiting for trigger.

bit 8 Synchronized (if sync source changes, there is a glitch).

bit 10 Averaging (averaging in progress, at the end of each averaging cycle, there is a glitch).

bit 12 Spectrum CALCulation in progress.

*RST state
0

Example(s)
STAT:OPER:ENAB 5948
STAT:OPER:ENAB? Response: 5948

Invalidates
-

Invalidated by
-

 Remote Control - Description of Commands
 List of Commands Grouped By Subsystems 4

 4-105

List of Commands Grouped By Subsystems
Command Parameter State

*CLS

*ESE 0 to 255

*ESR?

*IDN?

*OPC

*OPC?

*OPT?

*RST

*SRE 0 to 255

*STB?

*WAI

*SAV 10 to 24

*RCL 1 to 24

*LRN?

*TRG

ABORt

CALCulate:TRANsform:FREQuency[:STATe] ONCE

CALCulate:TRANsform:FREQuency:MODE FFT | DFT

CALCulate:TRANsform:FREQuency:FUNCtion <function list>

CALCulate:TRANsform:FREQuency:STARt <frequency>

CALCulate:TRANsform:FREQuency:STOP <frequency>

CALCulate:DATA? [<count>[,offset]]

CALCulate:DATA:PREamble?

CALCulate:INTegral[:STATe] ON | OFF

CALCulate:INTegral:FUNCtion <function list>

CALCulate:INTegral:CLEar[:IMMediate]

CALCulate:INTegral:CLEar:AUTO ON | OFF

CALCulate:INTegral:STARt:SOURce CMD | TIME | MAN

CALCulate:INTegral:STARt[:IMMediate]

CALCulate:INTegral:STARt:TIME yyyy,MM,dd,hh,mm,ss

CALCulate:INTegral:STOP:SOURce CMD | TIME | MAN | TINTerval

CALCulate:INTegral:STOP[:IMMediate]

CALCulate:INTegral:STOP:TIME yyyy,MM,dd,hh,mm,ss

Remote Control
Users Guide

4-106

CALCulate:INTegral:STOP:TINTerval 1.0e-3 to 9.99e+6

CALCulate:HARMonic:ORDer <order>

CALCulate:POWer[460]:EFFiciency:REFerence <function1>,<function2>

DISPlay[:WINDow][:STATe] ON | OFF

DISPlay:USER:FUNCtion <function list>

FORMat[:DATA] ASCii | REAL, [0..8] | [32 | 64]

FORMat[:DATA]:STATus ASCii | INTeger, [8] | 16 | 32

FORMat:BORDer NORMal | SWAPped

FORMat:TRANspose ON | OFF

HCOPy:SDUMp:DATA?

INITiate:CONTinuous ON | OFF

INITiate[:IMMediate]

INITiate[:IMMediate]:SEQuence1

INITiate[:IMMediate]:NAME STARt

INITiate[:IMMediate]:SEQuence2

INITiate[:IMMediate]:NAME STOP

INPut[1..12]:COUPling AC | DC

INPut[1|2|3|4|5|6|7|8|9|10|11|12]:GAIN 1.0e-7 to 1.0e+7

INPut[1..12]:FILTer[:STATe] ON | OFF

INPut[1..12]:FILTer[:LPASs]:FREQuency?

INPut[1|2|3|4|5|6|7|8|9|10|11|12]:SHUNt INTernal | EXTernal

INPut[21..28]:TYPe VOLTage | FREQuency Option PI1

OUTPut9[:STATe] ON | OFF

ROUTe:SYSTem “3W” | “2W”

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC|[:DC]:RANGe[:UPPer] 0.3 to 1000.0 V, 0.03 to 10.0 A,

0.03 to 10 V

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC[|:DC]:SCALe 0.9 to 1.0e+7

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC[|:DC]:RANGe[:UPPer]:LIST?

[SENSe:]CURRent[1..6]|VOLTage[1..6]:AC[|:DC]:RANGe[:UPPer]:AUTO ON | OFF | ONCE

[SENSe:]CURRent[1..6]|VOLTage[1..6][|:POWer]:AC[|:DC]:APERture 0.015 to 3600.0 s

[SENSe:]SWEep:FREQuency?

[SENSe:]FUNCtion[:ON] <function>{,<function>}

[SENSe:]FUNCtion[:ON]:ALL

[SENSe:]FUNCtion:OFF:ALL

[SENSe:]FUNCtion:CONCurrent ON | OFF

 Remote Control - Description of Commands
 List of Commands Grouped By Subsystems 4

 4-107

[SENSe:]FUNCtion[:ON]:COUNt?

[SENSe:]DATA? [<function>{,<function...>}]

[SENSe:]DATA:STATus? [<function>{,<function...>}]

[SENSe:]SWEep1|2:TIME <value> | MAX

[SENSe:]SWEep1|2:OFFSet:TIME <value> | MAX

[SENSe:]SWEep1|2:POINTS?

[SENSe:]SWEep1|2:OFFSet:POINTS?

[SENSe:]SWEep1|2[:STATe] ON | OFF

[SENSe:]SWEep1|2:COUNt <count>

[SENSe:]SWEep1|2:SFACtor 1 to 65535

[SENSe:]SWEep1|2:FUNCtion <function list>

SENSe2:TORQue[1..4]:VOLTage:SCALe -1e6 to 1e6 Option PI1

SENSe2:TORQue[1..4]:VOLTage:OFFSet[:VALue] -1e6 to 1e6 Option PI1

SENSe2:TORQue[1..4]:VOLTage:OFFSet:IMMediate Option PI1

SENSe2:TORQue[1..4]:FREQuency:SCALe -1e6 to 1e6 Option PI1

SENSe2:TORQue[1..4]:FREQuency:OFFSet[:VALue] -1e6 to 1e6 Option PI1

SENSe2:TORQue[1..4]:FREQuency:OFFSet:IMMediate Option PI1

SENSe2:SPEed[1..4]:VOLTage:SCALe[:DEFault] -1e6 to 1e6 Option PI1

SENSe2:SPEed[1..4]:VOLTage:OFFSet[:VALue] -1e6 to 1e6 Option PI1

SENSe2:SPEed[1..4]:VOLTage:OFFSet:IMMediate Option PI1

SENSe2:SPEed[1..4]:FREQuency:SCALe[:DEFault] -1e6 to 1e6 Option PI1

SENSe2:SPEed[1..4]:FREQuency:SCALe:PULSe 1 to 100000 Option PI1

SENSe2:SPEed[1..4]:FREQuency:OFFSet[:VALue] -1e6 to 1e6 Option PI1

SENSe2:SPEed[1..4]:FREQuency:OFFSet:IMMediate Option PI1

SENSe2:TYPe[1..4] MOTor | GENerator Option PI1

SENSe2:POLepairs[1..4] 1 to 999 Option PI1

SENSe2:REFerence[1..4][:POWer] "POWer[1..6][:ACTive]" Option PI1

SOURce:VOLTage[1..4]:MODE FIXed | VARiable Option PI1

SOURce:VOLTage[1..4][:LEVel][:IMMediate][:AMPLitude] -10.3 to 10.3 Option PI1

SOURce:VOLTage[1..4]:FEED <function> Option PI1

SOURce:VOLTage[1..4]:GAIN -1e6 to 1e6 Option PI1

SOURce:VOLTage[1..4]:ZERO -1e6 to 1e6 Option PI1

SYNC:STATe ON | OFF

SYNC:SOURce VOLTage[1..6] | CURRent[1..6]

| EXTernal

Remote Control
Users Guide

4-108

SYNC[:SOURce][|CURRent[1..6]|VOLTage[1..6]]:LEVel (-150% to 150% of nominal

input range)

SYNC:LEVel:UNIT ABSolute | PCT

SYNC[:SOURce]|CURRent[1..6]|VOLTage[1..6]:SLOPe POSitive | NEGative SOUR only

SYNC[:SOURce]|CURRent[1..6]|VOLTage[1..6]:FILTer:[LPASs[:STATe]] ON | OFF SOUR only

SYNC[:SOURce]|CURRent[1..6]|VOLTage[1..6]:FILTer:[LPASs]:FREQuency 100Hz, 1kHz, 10kHz SOUR only

SYNC:TIMeout 0.015 to 3600 s

TIMer:RESet

TIMer:RESet:AUTO ON | OFF n. i.

TIMer:RESet:TIME?

TRACe[:DATA]:PREamble? <block>

TRACe[:DATA]? [<block> [,<count> [,<offset>

[,<sparsing>[,opt_level]]]]]

TRACe[:DATA]:STATus? [<block> [,<count> [,<offset>

[,<sparsing>]]]]

TRACe:FREE?

TRACe:CATalog:LENgth?

TRACe:DELete:ALL

TRIGger:STARt:SOURce BUS | TIME | IMMediate |

MANual | SYNC | <function>

TRIGger:STARt:TIME yyyy,MM,dd,hh,mm,ss

TRIGger:STARt:LEVel <level>

TRIGger:STARt:SLOPe POSitive | NEGative

TRIGger:STOP:SOURce TIME | IMMediate | MANual |

<function>

TRIGger: STOP:TIME yyyy,MM,dd,hh,mm,ss

TRIGger:STOP:LEVel <level>

TRIGger:STOP:SLOPe POSitive | NEGative

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess 1 to 30

SYSTem:COMMunicate:SERial:BAUD 1200 to 115200

SYSTem:DATE <year>,<month>,<day>

SYSTem:TIME <hours>,<minutes>,

<seconds>

SYSTem:ERRor[:NEXT]?

SYSTem:ERRor:ALL?

SYSTem:KLOCk ON | OFF | REMote

SYSTem:LANGuage "DEFault" | "D5255S" |

 Remote Control - Description of Commands
 List of Commands Grouped By Subsystems 4

 4-109

"D5255T" | "D5255M"

SYSTem:VERSion?

STATus:QUEStionable:VOLTage:CONDition?

STATus:QUEStionable:VOLTage:PTRansition 0 to 65535

STATus:QUEStionable:VOLTage:NTRansition 0 to 65535

STATus:QUEStionable:VOLTage[:EVENt]?

STATus:QUEStionable:VOLTage:ENABle 0 to 65535

STATus:QUEStionable:CURRent:CONDition?

STATus:QUEStionable:CURRent:PTRansition 0 to 65535

STATus:QUEStionable:CURRent:NTRansition 0 to 65535

STATus:QUEStionable:CURRent[:EVENt]?

STATus:QUEStionable:CURRent:ENABle 0 to 65535

STATus:QUEStionable:CONDition?

STATus:QUEStionable:PTRansition 0 to 65535

STATus:QUEStionable:NTRansition 0 to 65535

STATus:QUEStionable[:EVENt]?

STATus:QUEStionable:ENABle 0 to 65535

STATus:OPERation:CONDition?

STATus:OPERation:PTRansition 0 to 65535

STATus:OPERation:NTRansition 0 to 65535

STATus:OPERation[:EVENt]?

STATus:OPERation:ENABle 0 to 65535

n. i. – Not Implemented

Remote Control
Users Guide

4-110

 5-1

Chapter 5
Error Messages

 Title Page

Introduction.. 5-3
Command Error ... 5-3
Execution Error.. 5-5
Device-Specific Error .. 5-6
Query Error .. 5-7

Remote Control
Users Guide

5-2

 Error Messages
 Introduction 5

 5-3

Introduction
Error messages are entered in the error/event queue of the status reporting system in the
remote control mode and can be queried with the command SYSTem:ERRor?. The
answer format of instrument to the command is as follows:
<error code>, "<error description>;<remote control command concerned>"
The indication of the remote control command with prefixed semicolon is optional.

Example
The command "TEST:COMMAND" generates the following answer to the query
SYSTem:ERRor? :
-113,"Undefined header;TEST:COMMAND"

The subsequent list contains the description of error texts displayed on the instrument.
Distinction is made between error messages defined by SCPI, which are marked by
negative error codes, and the device-specific error messages for which positive error
codes are used.
The right-hand column in the following tables contains the error text in bold which is
entered in the
error/event queue and can be read out by means of query SYSTem:ERRor?. A short
explanation of the error cause is given below. The left-hand column contains the
associated error code.
Events that generate command errors shall not generate execution errors, device-specific
errors, or query errors; see the other error definitions in this chapter.

Command Error
An <error/event number> in the range [-199 , -100] indicates that an IEEE 488.2 syntax
error has been detected by the instrument’s parser. The occurrence of any error in this
class causes the command error bit (bit 5) in the event status register (IEEE 488.2, section
11.5.1) to be set. One of the following events has occurred:

• An IEEE 488.2 syntax error has been detected by the parser. That is, a controller-
to-device message was received which is in violation of the IEEE 488.2 standard.
Possible violations include a data element which violates the device listening
formats or whose type is unacceptable to the device.

• An unrecognized header was received. Unrecognized headers include incorrect
device-specific headers and incorrect or unimplemented IEEE 488.2 common
commands.

Error Number ErrorDescription [description/explanation/examples]

-100 Command error

[This is the generic syntax error for devices that cannot detect more specific errors. This
code indicates only that a Command Error as defined in IEEE 488.2, 11.5.1.1.4 has
occurred.]

-101 Invalid character

[A syntactic element contains a character which is invalid for that type; for example, a
header containing an ampersand, SETUP&.]

Remote Control
Users Guide

5-4

-102 Syntax error

[An unrecognized command or data type was encountered; for example, a string was
received when the device does not accept strings.]

-103 Invalid separator

[The parser was expecting a separator and encountered an illegal character; for
example, the semicolon was omitted after a program message unit, *SRE 1:INP1:COUP
AC.]

-104 Data type error

[The parser recognized a data element different than one allowed; for example, numeric
or string data was expected but block data was encountered.]

-108 Parameter not allowed

[More parameters were received than expected for the header; for example, the *SRE
common command only accepts one parameter, so receiving *SRE 2,1 is not allowed.]

-109 Missing parameter

[Fewer parameters were received than required for the header; for example, the *SRE
common command requires one parameter, so receiving *SRE is not allowed.]

-110 Command header error

[An error was detected in the header.]

-112 Program mnemonic too long

[The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1).]

-113 Undefined header

[The header is syntactically correct, but it is undefined for this specific device; for
example, *XYZ is not defined for any device.]

-114 Header suffix out of range

[The value of a numeric suffix attached to a program mnemonic, see Syntax and Style
section, makes the header invalid.]

-120 Numeric data error

[This error is generated when parsing a data element which apprears to be numeric,
including the nondecimal numeric types. For example INP:GAIN 1.0X2 will generate this
error.]

-130 Suffix error

[This error, as well as errors -131 through -139, are generated when parsing a suffix.]

-131 Invalid suffix

[The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the suffix is
inappropriate for this device.]

-134 Suffix too long

[The suffix contained more than 12 characters (see IEEE 488.2, 7.7.3.4).]

-138 Suffix not allowed

[A suffix was encountered after a numeric element which does not allow suffixes.]

 Error Messages
 5

 5-5

-140 Character data error

[This error is generated when parsing a character data element. For example INP:COUP
XYZ will generate this error.]

-141 Invalid character data

[Either the character data element contains an invalid character or the particular element
received is not valid for the header.]

-144 Character data too long

[The character data element contains more than twelve characters (see IEEE488.2,
7.7.1.4).]

-148 Character data not allowed

[A legal character data element was encountered where prohibited by the device.]

-150 String data error

[This error is generated when parsing a string data element. For example FUNC "XYZ"
will generate this error.]

-151 Invalid string data

[A string data element was expected, but was invalid for some reason (see IEEE488.2,
7.7.5.2); for example, an END message was received before the terminal quote
character.]

Execution Error
An <error/event number> in the range [-299 , -200] indicates that an error has been
detected by the instrument’s execution control block. The occurrence of any error in this
class shall cause the execution error bit (bit 4) in the event status register (IEEE 488.2,
section 11.5.1) to be set. One of the following events has occurred:

• A <PROGRAM DATA> element following a header was evaluated by the device
as outside of its legal input range or is otherwise inconsistent with the device’s
capabilities.

• A valid program message could not be properly executed due to some device
condition.

Execution errors are reported by the instrument after rounding and expression evaluation
operations have taken place. Rounding a numeric data element, for example, will not be
reported as an execution error.

Error Number Error String [description/explanation/examples]

-200 Execution error

[This is the generic syntax error for devices that cannot detect more specific errors. This
code indicates only that an Execution Error as defined in IEEE 488.2, 11.5.1.1.5 has
occurred.]

-203 Command protected

[Indicates that a legal password-protected program command or query could not be
executed because the command was disabled.]

Remote Control
Users Guide

5-6

-212 Arm ignored

[Indicates that an arming signal was received and recognized by the device but was
ignored. Instrument will generate this error when ARM is received, but memory
recording is not configured.]

-213 Init ignored

[Indicates that a request for a measurement was ignored as another measurement was
already in progress.]

-221 Settings conflict

[Indicates that a legal program data element was parsed but could not be executed due
to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5.)]

-222 Data out of range

[Indicates that a legal program data element was parsed but could not be executed
because the interpreted value was outside the legal range as defined by the device (see
IEEE 488.2, 11.5.1.1.5.)]

-223 Too much data

[Indicates that a legal program data element of block, expression, or string type was
received that contained more data than the device could handle due to memory or
related device-specific requirements.]11

-224 Illegal parameter value

[Used where exact value, from a list of possibles, was expected.]11

-225 Out of memory.

[The device has insufficient memory to perform the requested operation.]13

-230 Data corrupt or stale

[Possibly invalid data; new reading started but not completed since last access.]

-240 Hardware error

[Indicates that a legal program command or query could not be executed because of a
hardware problem in the device.]

Device-Specific Error
An <error/event number> in the range [-399 , -300] or [1 , 32767] indicates that the
instrument has detected an error, possibly due to an abnormal hardware or firmware
condition. These codes are also used for self-test response errors. The occurrence of any
error in this class causes the device-specific error bit (bit 3) in the event status register
(IEEE 488.2, section 11.5.1) to be set.

Error Number Error String [description/explanation/examples]

-300 Device-specific error

[This is the generic device-dependent error for devices that cannot detect more specific
errors. This code indicates only that a Device-Dependent Error as defined in IEEE
488.2, 11.5.1.1.6 has occurred.]

 Error Messages
 5

 5-7

-310 System error

[Indicates that some error, termed “system error” by the device, has occurred. This code
is device-dependent.]

-311 Memory error

[Indicates some physical fault in the device’s memory, such as parity error.]

-313 Calibration memory lost

[Indicates that nonvolatile calibration data used by the *CAL? command has been lost.]

-314 Save/recall memory lost

[Indicates that the nonvolatile data saved by the *SAV? command has been lost.]

-315 Configuration memory lost

[Indicates that nonvolatile configuration data saved by the device has been lost.] 1

-320 Storage fault

[Indicates that the firmware detected a fault when using data storage. This error is not an
indication of physical damage or failure of any mass storage element.]

-325 Sample factor adjusted

[Indicates that applying current configuration caused the sample factor to be adjusted.]

-326 Recording time too long

[Indicates that the data acquired within the specified recording time would not fit into the
available memory.]

-330 Self-test failed

-340 Calibration failed

-350 Queue overflow

[A specific code entered into the queue in lieu of the code that caused the error. This
code indicates that there is no room in the queue and an error occurred but was not
recorded.]

-360 Communication error

Query Error
An <error/event number> in the range [-499 , -400] indicates that the output queue
control of the instrument has detected a problem with the message exchange protocol
described in IEEE 488.2, chapter 6. The occurrence of any error in this class will cause
the query error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1) to be
set. These errors correspond to message exchange protocol errors described in IEEE
488.2, section 6.5. One of the following is true:

• An attempt is being made to read data from the output queue when no output is
either present or pending;

• Data in the output queue has been lost.
• Events that generate query errors shall not generate command errors, execution

errors, or device-specific errors; see the other error definitions in this section.

Remote Control
Users Guide

5-8

Error Number Error String [description/explanation/examples]

-400 Query error[This is the generic query error for devices that cannot detect more specific
errors. This code indicates only that a Query Error as defined in IEEE 488.2,
11.5.1.1.7and 6.3 has occurred.]

-410 Query INTERRUPTED[Indicates that a condition causing an INTERRUPTED Query
error occurred (see IEEE 488.2, 6.3.2.3); for example, a query followed by DAB or GET
before a response was completely sent.]

-420 Query UNTERMINATED[Indicates that a condition causing an UNTERMINATED Query
error occurred (see IEEE 488.2, 6.3.2.2); for example, the device was addressed to talk
and an incomplete program message was received.]

-430 Query DEADLOCKED[Indicates that a condition causing an DEADLOCKED Query error
occurred (see IEEE 488.2, 6.3.1.7); for example, both input buffer and output buffer are
full and the device cannot continue.]

-440 Query UNTERMINATED after indefinite response [Indicates that a query was received in
the same program message after a query requesting an indefinite response was
executed (see IEEE 488.2, 6.5.7.5).]

 6-1

Chapter 6
Programming Examples

 Title Page

Introduction.. 6-3
Initialize Interface .. 6-3
Initialize Instrument ... 6-5
Perform Simple Power Measurement .. 6-6
U, I, P Measurement .. 6-9
Continuous Power Measurement ... 6-11
U, I, P Measurement over Ethernet Interface without VISA Library 6-14
U, I, P Measurement over RS-232 Interface without VISA Library 6-19
U, I, P Measurement over USB (RS-232) Interface without VISA Library 6-26

Remote Control
Users Guide

6-2

 Programming Examples
 Introduction 6

 6-3

Introduction
The following examples explain how to program the instrument and can serve as a basis
to solve more complex programming tasks. In these examples, the interface (RS-232 /
GPIB / ethernet) can be selected by setting constant ‘INTFC‘ to corresponding
‘INTFC_…‘ constant. Communication parameters (e.g. serial port, baud rate, IP address,
etc.) are set using ‘RSRC_NAME‘ and ‘RSRC_ATTR_…‘ constants.
The programing examples are written in ANSI C using VISA library implemented
according to version 2.2 of the VISA specification (www.vxipnp.org), for example
National instruments VISA 2.5 or higher. It is possible to communicate with the
instrument over RS-232 or Ethernet interface using basic operating system (e.g. Win32 or
UNIX) API only, that is, without using VISA library. There is one such example for
ethernet interface (using Win32 API) later in this chapter.

Initialize Interface
The interface must be initialized before any communication with the instrument takes
place.
The interface must be initialized before any communication with the instrument takes
place.

/*

 * INITIALIZE INTERFACE

 *

 * This program will open VISA session to the instrument.

 * The program uses RS-232, GPIB or ethernet interface depending

 * on the setting of 'INTFC' constant and sets the I/O timeout

 * to 10 seconds.

 */

#include <visa.h>

#include <stdio.h>

#define INTFC_RS232 1 /* RS-232 interface */

#define INTFC_GPIB 2 /* GPIB / IEEE 488.2 interface */

#define INTFC_LAN 3 /* ethernet / IEEE 802.3 interface */

#define INTFC_USB 4 /* USB interface (Virtual COM Port) */

#if 1

#define INTFC INTFC_RS232

#elif 1

#define INTFC INTFC_GPIB

#elif 1

#define INTFC INTFC_LAN

#else

#define INTFC INTFC_USB

#endif

#if INTFC == INTFC_RS232

define RSRC_NAME "ASRL1" /* COM1 */

define RSRC_ATTR_BAUD 115200 /* baud rate */

define RSRC_ATTR_FLOW_CNTRL VI_ASRL_FLOW_RTS_CTS /* flow control */

#elif INTFC == INTFC_GPIB

define RSRC_NAME "GPIB::5"

Remote Control
Users Guide

6-4

#elif INTFC == INTFC_LAN

define RSRC_NAME "TCPIP::192.168.2.251::23::SOCKET"

#elif INTFC == INTFC_USB

define RSRC_NAME "ASRL2" /* COM2 */

#else

#error 'INTFC': unsupported value

#endif

ViSession rm, // Default resource manager session

 vi; // VISA session

int main(int argc,char *argv[])

{

#define CHECK_STATUS(cond,func,status) { \

 if (cond) \

 { \

 fprintf(stderr,"%s failed, status 0x%lX\n",func,status); \

 return 1; \

 } \

 }

 ViStatus status;

 (void) argc;

 (void) argv;

 /* Open default resource manager: */

 status = viOpenDefaultRM (&rm);

 CHECK_STATUS(status < VI_SUCCESS,"viOpenDefaultRM()",status);

 /* Open VISA session to the instrument: */

 status = viOpen (rm,RSRC_NAME,VI_NULL,0,&vi);

 CHECK_STATUS(status != VI_SUCCESS,"viOpen()",status);

 /* Set timeout to 10 seconds: */

 status = viSetAttribute (vi, VI_ATTR_TMO_VALUE, 10000);

 CHECK_STATUS(status != VI_SUCCESS,"viSetAttribute()",status);

 /* Close VISA session to the instrument: */

 status = viClose (vi);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(vi)",status);

 /* Close session to the default resource manager: */

 status = viClose(rm);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(rm)",status);

 puts("OK");

 return 0;

#undef CHECK_STATUS

}

 Programming Examples
 Initialize Instrument 6

 6-5

Initialize Instrument
Before any further communication, the instrument’s identity should be verified and the
instrument should be brought into a known (default) state.

/*

 * IDENTIFY AND RESET THE INSTRUMENT

 *

 * This program will open VISA session to the instrument, read ID string

 * and reset the instrument.

 */

#include <visa.h>

#include <stdio.h>

#define INTFC_RS232 1 /* RS-232 interface */

#define INTFC_GPIB 2 /* GPIB / IEEE 488.2 interface */

#define INTFC_LAN 3 /* ethernet / IEEE 802.3 interface */

#define INTFC_USB 4 /* USB interface (Virtual COM Port) */

#if 1

#define INTFC INTFC_RS232

#elif 1

#define INTFC INTFC_GPIB

#elif 1

#define INTFC INTFC_LAN

#else

#define INTFC INTFC_USB

#endif

#if INTFC == INTFC_RS232

define RSRC_NAME "ASRL1" /* COM1 */

define RSRC_ATTR_BAUD 115200 /* baud rate */

define RSRC_ATTR_FLOW_CNTRL VI_ASRL_FLOW_RTS_CTS /* flow control */

#elif INTFC == INTFC_GPIB

define RSRC_NAME "GPIB::5"

#elif INTFC == INTFC_LAN

define RSRC_NAME "TCPIP::192.168.2.251::23::SOCKET"

#elif INTFC == INTFC_USB

define RSRC_NAME "ASRL2" /* COM2 */

#else

#error 'INTFC': unsupported value

#endif

ViSession rm, // Default resource manager session

 vi; // VISA session

ViChar buffer[512]; // buffer to hold instrument response

ViUInt32 retCnt; // number of bytes read from the instrument

int main(int argc,char *argv[])

{

#define CHECK_STATUS(cond,func,status) { \

 if (cond) \

 { \

Remote Control
Users Guide

6-6

 fprintf(stderr,"%s failed, status 0x%lX\n",func,status); \

 return 1; \

 } \

 }

 ViStatus status;

 (void) argc;

 (void) argv;

 /* Open default resource manager: */

 status = viOpenDefaultRM (&rm);

 CHECK_STATUS(status < VI_SUCCESS,"viOpenDefaultRM()",status);

 /* Open VISA session to the instrument: */

 status = viOpen (rm,RSRC_NAME,VI_NULL,0,&vi);

 CHECK_STATUS(status != VI_SUCCESS,"viOpen()",status);

#if INTFC == INTFC_RS232

 /* set RS-232 I/O attributes (transmission parameters): */

 viSetAttribute (vi, VI_ATTR_ASRL_BAUD, RSRC_ATTR_BAUD);

 viSetAttribute (vi, VI_ATTR_ASRL_FLOW_CNTRL, RSRC_ATTR_FLOW_CNTRL);

#endif

 /* Query the instrument's ID string: */

 viPrintf (vi, "*IDN?\n");

 /* Read the ID string into buffer: */

 viRead (vi, buffer, 256, &retCnt);

 /* Print contens of the buffer on screen: */

 printf (buffer);

 /* Bring the instrument into default state: */

 viPrintf (vi, "*RST\n");

 /* Close VISA session to the instrument: */

 status = viClose (vi);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(vi)",status);

 /* Close session to the default resource manager: */

 status = viClose(rm);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(rm)",status);

 return 0;

#undef CHECK_STATUS

}

Perform Simple Power Measurement
Valid signals should be connected to the input channels of instrument, otherwise the
measured value can be invalid.

/*

 * MEASURE POWER (wait synchronously)

 *

 * This program will open VISA session to the instrument and perform a simple

 Programming Examples
 Perform Simple Power Measurement 6

 6-7

 * power measurement. It dwells in viRead function while waiting

 * for measurement.

 *

 * The time it will take to measure the power depends on the voltage and

 * current signals attached to the instrument. Default averaging interval

 * (equals to measurement time) is 300 ms. In the case viRead times out

before

 * the measured power is returned, VISA timeout must be increased. Use

 * function viSetAttribute to change the timeout value (default is 10 sec).

 */

#include <visa.h>

#include <stdio.h>

#define INTFC_RS232 1 /* RS-232 interface */

#define INTFC_GPIB 2 /* GPIB / IEEE 488.2 interface */

#define INTFC_LAN 3 /* ethernet / IEEE 802.3 interface */

#define INTFC_USB 4 /* USB interface (Virtual COM Port) */

#if 1

#define INTFC INTFC_RS232

#elif 1

#define INTFC INTFC_GPIB

#elif 1

#define INTFC INTFC_LAN

#else

#define INTFC INTFC_USB

#endif

#if INTFC == INTFC_RS232

define RSRC_NAME "ASRL1" /* COM1 */

define RSRC_ATTR_BAUD 115200 /* baud rate */

define RSRC_ATTR_FLOW_CNTRL VI_ASRL_FLOW_RTS_CTS /* flow control */

#elif INTFC == INTFC_GPIB

define RSRC_NAME "GPIB::5"

#elif INTFC == INTFC_LAN

define RSRC_NAME "TCPIP::192.168.2.251::23::SOCKET"

#elif INTFC == INTFC_USB

define RSRC_NAME "ASRL2" /* COM2 */

#else

#error 'INTFC': unsupported value

#endif

ViSession rm, // Default resource manager session

 vi; // VISA session

ViChar buffer[512]; // buffer to hold instrument response

ViUInt32 retCnt; // number of bytes read from the instrument

#if WIN32

#include <windows.h>

static void Delay(double seconds)

{

 Sleep((DWORD)(seconds * 1000));

}

#endif

Remote Control
Users Guide

6-8

int main(int argc,char *argv[])

{

#define CHECK_STATUS(cond,func,status) { \

 if (cond) \

 { \

 fprintf(stderr,"%s failed, status 0x%lX\n",func,status); \

 return 1; \

 } \

 }

 ViStatus status;

 (void) argc;

 (void) argv;

 /* Open default resource manager: */

 status = viOpenDefaultRM (&rm);

 CHECK_STATUS(status < VI_SUCCESS,"viOpenDefaultRM()",status);

 /* Open VISA session to the instrument with GPIB address 5: */

 status = viOpen (rm,RSRC_NAME,VI_NULL,0,&vi);

 CHECK_STATUS(status != VI_SUCCESS,"viOpen()",status);

 /* Set timeout to 10 seconds: */

 status = viSetAttribute (vi, VI_ATTR_TMO_VALUE, 10000);

 CHECK_STATUS(status != VI_SUCCESS,"viSetAttribute()",status);

#if INTFC == INTFC_RS232

 /* set RS-232 I/O attributes (transmission parameters): */

 viSetAttribute (vi, VI_ATTR_ASRL_BAUD, RSRC_ATTR_BAUD);

 viSetAttribute (vi, VI_ATTR_ASRL_FLOW_CNTRL, RSRC_ATTR_FLOW_CNTRL);

#endif

#if 0

 /* enable termination character for read operations: */

 viSetAttribute (vi, VI_ATTR_TERMCHAR, '\n');

 viSetAttribute (vi, VI_ATTR_TERMCHAR_EN, VI_TRUE);

#if INTFC == INTFC_RS232

 viSetAttribute (vi, VI_ATTR_ASRL_END_IN, VI_ASRL_END_TERMCHAR);

#endif

#endif

 viPrintf (vi, "*RST\n"); /* Bring the instrument into a default state

*/

 Delay (3.0); /* Wait 3 seconds for autorange to complete */

 viPrintf (vi, "*TRG\n"); /* Trigger a measurement */

 Delay (2.0); /* Wait 2 seconds */

 viPrintf (vi, "DATA? \"POW:ACT\"\n"); /* Query the power */

 memset(buffer,0,sizeof(buffer)); /* Clear buffer */

 viRead (vi, buffer, 256, &retCnt); /* Read value */

 printf(buffer); /* Print the value on the screen */

 /* Close VISA session to the instrument: */

 status = viClose (vi);

 Programming Examples
 U, I, P Measurement 6

 6-9

 CHECK_STATUS(status != VI_SUCCESS,"viClose(vi)",status);

 /* Close session to the default resource manager: */

 status = viClose(rm);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(rm)",status);

 return 0;

#undef CHECK_STATUS

}

U, I, P Measurement
This example will configure the instrument to measure power, voltage and current on
three-phase system 3 x 400V/50Hz and reads the measurements.

/*

 * MEASURE U, I, P (wait synchronously)

 *

 * This example will configure the instrument to measure power, voltage

 * and current on three-phase system 3 x 400V/50Hz and reads the

measurements.

 *

 * The time it will take to finish the measurement is 1 s (averaging time).

 * The query DATA? does not wait for the measurement to be completed, so it

 * would return whatever values are available at a moment. The delay of 2

 * seconds gives the instrument enough time to finish the measurement before

 * reading data.

 */

#include <visa.h>

#include <stdio.h>

#define INTFC_RS232 1 /* RS-232 interface */

#define INTFC_GPIB 2 /* GPIB / IEEE 488.2 interface */

#define INTFC_LAN 3 /* ethernet / IEEE 802.3 interface */

#define INTFC_USB 4 /* USB interface (Virtual COM Port) */

#if 1

#define INTFC INTFC_RS232

#elif 1

#define INTFC INTFC_GPIB

#elif 1

#define INTFC INTFC_LAN

#else

#define INTFC INTFC_USB

#endif

#if INTFC == INTFC_RS232

define RSRC_NAME "ASRL1" /* COM1 */

define RSRC_ATTR_BAUD 115200 /* baud rate */

define RSRC_ATTR_FLOW_CNTRL VI_ASRL_FLOW_RTS_CTS /* flow control */

#elif INTFC == INTFC_GPIB

define RSRC_NAME "GPIB::5"

Remote Control
Users Guide

6-10

#elif INTFC == INTFC_LAN

define RSRC_NAME "TCPIP::192.168.2.251::23::SOCKET"

#elif INTFC == INTFC_USB

define RSRC_NAME "ASRL2" /* COM2 */

#else

#error 'INTFC': unsupported value

#endif

ViSession rm, // Default resource manager session

 vi; // VISA session

ViChar buffer[512]; // buffer to hold instrument response

ViUInt32 retCnt; // number of bytes read from the instrument

#if WIN32

#include <windows.h>

static void Delay(double seconds)

{

 Sleep((DWORD)(seconds * 1000));

}

#endif

int main(int argc,char *argv[])

{

#define CHECK_STATUS(cond,func,status) { \

 if (cond) \

 { \

 fprintf(stderr,"%s failed, status 0x%lX\n",func,status); \

 return 1; \

 } \

 }

 ViStatus status;

 (void) argc;

 (void) argv;

 /* Open default resource manager: */

 status = viOpenDefaultRM (&rm);

 CHECK_STATUS(status < VI_SUCCESS,"viOpenDefaultRM()",status);

 /* Open VISA session to the instrument with GPIB address 5: */

 status = viOpen (rm,RSRC_NAME,VI_NULL,0,&vi);

 CHECK_STATUS(status != VI_SUCCESS,"viOpen()",status);

 /* Set timeout to 10 seconds: */

 status = viSetAttribute (vi, VI_ATTR_TMO_VALUE, 10000);

 CHECK_STATUS(status != VI_SUCCESS,"viSetAttribute()",status);

#if INTFC == INTFC_RS232

 /* set RS-232 I/O attributes (transmission parameters): */

 viSetAttribute (vi, VI_ATTR_ASRL_BAUD, RSRC_ATTR_BAUD);

 viSetAttribute (vi, VI_ATTR_ASRL_FLOW_CNTRL, RSRC_ATTR_FLOW_CNTRL);

#endif

 /* Bring the instrument into a default state: */

 Programming Examples
 Continuous Power Measurement 6

 6-11

 viPrintf (vi, "*RST\n");

 /* Select three wattmeter configuration: */

 viPrintf (vi, "ROUT:SYST \"3W\"\n");

 /* SYNC source = voltage phase 1: */

 viPrintf (vi, "SYNC:SOUR VOLT1\n");

 /* Set voltage range on voltage channel 1 to 300 V: */

 viPrintf (vi, "VOLT1:RANG 300.0\n");

 /* Set current channel 1 to autorange: */

 viPrintf (vi, "CURR1:RANG:AUTO ON\n");

 /* Set averaging time to 1 second: */

 viPrintf (vi, "APER 1.0\n");

 /* Select U, I, P measurement: */

 viPrintf (vi, "FUNC \"VOLT1\",\"CURR1\",\"POW1:ACT\"\n");

 /* Run continuous measurements: */

 viPrintf (vi, "INIT:CONT ON\n");

 Delay (2.0); /* Wait 2 seconds */

 viPrintf (vi, "DATA?\n"); /* Query the measurement */

 memset(buffer,0,sizeof(buffer)); /* Clear buffer */

 viRead (vi, buffer, 256, &retCnt); /* Read values */

 printf (buffer); /* Print the value on the screen */

 /* Close VISA session to the instrument: */

 status = viClose (vi);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(vi)",status);

 /* Close session to the default resource manager: */

 status = viClose(rm);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(rm)",status);

 return 0;

#undef CHECK_STATUS

}

Continuous Power Measurement
Valid signals should be connected to the input channels of instrument, otherwise the
measured value can be invalid.

/*

 * CONTINUOUS POWER MEASUREMENT

 *

 * This program will open VISA session to the instrument and perform

continuous

 * power measurement. Bit 10 of the operating status register is used

 * to determine end of averaging interval. This way it is assured that

 * the newest measurement is immediately fetched and displayed.

 *

 * The time it will take to measure the power depends on the voltage and

 * current signals attached to the instrument. Default averaging interval

 * (equals to measurement time) is 300 ms. In the case viRead times out

before

Remote Control
Users Guide

6-12

 * the measured power is returned, VISA timeout must be increased.

 * Use function viSetAttribute to change the timeout value (default is 10

sec).

 */

#include <visa.h>

#include <stdio.h>

#define INTFC_RS232 1 /* RS-232 interface */

#define INTFC_GPIB 2 /* GPIB / IEEE 488.2 interface */

#define INTFC_LAN 3 /* ethernet / IEEE 802.3 interface */

#define INTFC_USB 4 /* USB interface (Virtual COM Port) */

#if 1

#define INTFC INTFC_RS232

#elif 1

#define INTFC INTFC_GPIB

#elif 1

#define INTFC INTFC_LAN

#else

#define INTFC INTFC_USB

#endif

#if INTFC == INTFC_RS232

define RSRC_NAME "ASRL1" /* COM1 */

define RSRC_ATTR_BAUD 115200 /* baud rate */

define RSRC_ATTR_FLOW_CNTRL VI_ASRL_FLOW_RTS_CTS /* flow control */

#elif INTFC == INTFC_GPIB

define RSRC_NAME "GPIB::5"

#elif INTFC == INTFC_LAN

define RSRC_NAME "TCPIP::192.168.2.251::23::SOCKET"

#elif INTFC == INTFC_USB

define RSRC_NAME "ASRL2" /* COM2 */

#else

#error 'INTFC': unsupported value

#endif

ViSession rm, // Default resource manager session

 vi; // VISA session

ViChar buffer[512]; // buffer to hold instrument response

ViUInt32 retCnt; // number of bytes read from the instrument

ViUInt16 opStat;

#if WIN32

#include <windows.h>

static void Delay(double seconds)

{

 Sleep((DWORD)(seconds * 1000));

}

#endif

int main(int argc,char *argv[])

{

#define CHECK_STATUS(cond,func,status) { \

 if (cond) \

 Programming Examples
 Continuous Power Measurement 6

 6-13

 { \

 fprintf(stderr,"%s failed, status 0x%lX\n",func,status); \

 return 1; \

 } \

 }

 ViStatus status;

 (void) argc;

 (void) argv;

 /* Open default resource manager: */

 status = viOpenDefaultRM (&rm);

 CHECK_STATUS(status < VI_SUCCESS,"viOpenDefaultRM()",status);

 /* Open VISA session to the instrument with GPIB address 5: */

 status = viOpen (rm,RSRC_NAME,VI_NULL,0,&vi);

 CHECK_STATUS(status != VI_SUCCESS,"viOpen()",status);

 /* Set timeout to 10 seconds: */

 status = viSetAttribute (vi, VI_ATTR_TMO_VALUE, 10000);

 CHECK_STATUS(status != VI_SUCCESS,"viSetAttribute()",status);

#if INTFC == INTFC_RS232

 /* set RS-232 I/O attributes (transmission parameters): */

 viSetAttribute (vi, VI_ATTR_ASRL_BAUD, RSRC_ATTR_BAUD);

 viSetAttribute (vi, VI_ATTR_ASRL_FLOW_CNTRL, RSRC_ATTR_FLOW_CNTRL);

#endif

 viPrintf (vi, "*RST\n"); /* Bring the instrument into a default state

*/

 Delay (3.0); /* Wait 3 seconds for autorange to complete

*/

 viPrintf (vi, "*TRG\n"); /* Trigger a measurement */

 Delay (2.0); /* Wait 2 seconds */

 while (1)

 {

 opStat = 0;

 viPrintf (vi, "*CLS\n"); /* Clear previously detected event */

 do /* Run this loop until bit 10 is set */

 {

 /* Query the OPER:STAT register value: */

 viPrintf (vi, "STAT:OPER?\n");

 memset(buffer,0,sizeof(buffer)); /* Clear buffer */

 viRead (vi, buffer, 256, &retCnt); /* Read value */

 opStat = atoi (buffer);

#if 0

 printf("opStat: 0x%X\n",(unsigned int)opStat);

#endif

 } while ((opStat & 0x400) == 0);

 viPrintf (vi, "DATA? \"POW\"\n"); /* Query the power measurement */

 viRead (vi, buffer, 256, &retCnt); /* Read value */

Remote Control
Users Guide

6-14

 printf (buffer); /* Print the value on the screen */

 }

 /* Close VISA session to the instrument: */

 status = viClose (vi);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(vi)",status);

 /* Close session to the default resource manager: */

 status = viClose(rm);

 CHECK_STATUS(status != VI_SUCCESS,"viClose(rm)",status);

 return 0;

#undef CHECK_STATUS

}

U, I, P Measurement over Ethernet Interface without VISA
Library

This example will configure the instrument to measure power, voltage and current on
three-phase system 3 x 400V/50Hz and reads the measurements.

/*

 * MEASURE U, I, P (wait synchronously)

 *

 * This example will configure the instrument to measure power, voltage

 * and current on three-phase system 3 x 400V/50Hz and reads the

measurements.

 *

 * The time it will take to finish the measurement is 1 s (averaging time).

 * The query DATA? does not wait for the measurement to be completed, so it

 * would return whatever values are available at a moment. The delay of 2

 * seconds gives the instrument enough time to finish the measurement before

 * reading data.

 */

#if WIN32

#define WIN 1

#endif

#if WIN

#if !defined(_MFC_VER) /* !MFC (!<afx.h>) */

#include <winsock2.h>

#include <windows.h>

#endif /* !_MFC_VER */

#endif

#include <stdio.h>

#define HOST "192.168.2.251"

#define PORT 23

#if WIN

#define SOCKET_HANDLE_FMT_PFX ""

 Programming Examples
 U, I, P Measurement over Ethernet Interface without VISA Library 6

 6-15

#define SOCKET_HANDLE_FMT "u" /* "%u" - 'typedef u_int SOCKET' */

typedef SOCKET socket_handle_t;

#endif

typedef struct {

 socket_handle_t h;

} *socket_t;

/**

**/

static void Delay(double seconds)

{

 Sleep((DWORD)(seconds * 1000));

}

/**

**/

void wsa_error(char *func,int error)

{

 fprintf(stderr,"%s() failed, error %d\n",

 func,error == -1 ? WSAGetLastError() : error);

}

/**

**/

int socket_setup(void)

{

#if WIN

 WSADATA wsaData;

 int wsaerrno;

 /*

 * Initialize Windows Socket DLL

 */

 if ((wsaerrno = WSAStartup(

 MAKEWORD(1,1), /* at least version 1.1 */

 &wsaData)) != 0)

 {

 wsa_error("WSAStartup",wsaerrno);

 return -1;

 }

#endif /* WIN */

 return 0; /* OK */

}

/**

**/

int socket_cleanup(void)

{

#if WIN

 if (WSACleanup() == SOCKET_ERROR)

 wsa_error("WSACleanup",-1);

Remote Control
Users Guide

6-16

#endif

 return 0; /* OK */

}

/**

**/

socket_t socket_create(void)

{

 socket_handle_t sh;

 socket_t s;

 sh = socket(AF_INET,SOCK_STREAM,0);

#if WIN

 if (sh == INVALID_SOCKET)

 {

 wsa_error("socket",-1);

 return NULL;

 }

#endif

 s = calloc(1,sizeof(*s));

 if (!s)

 return NULL;

 s->h = sh;

 return s; /* OK */

}

/**

**/

int socket_connect(socket_t s,struct sockaddr *addr,int addrlen)

{

 int ret = 0; /* OK */

#if WIN

 if (connect(s->h,addr,addrlen) == SOCKET_ERROR)

 {

 wsa_error("connect",-1);

 return -1;

 }

#endif

 return 0; /* OK */

}

/**

**/

int socket_recv(socket_t s,void *buf,int len,int flags)

{

 register int l;

#if WIN

 l = recv(s->h,buf,len,flags);

 Programming Examples
 U, I, P Measurement over Ethernet Interface without VISA Library 6

 6-17

 if (l == SOCKET_ERROR)

 {

 wsa_error("recv",-1);

 return -1;

 }

#endif

 return l;

}

/**

**/

int socket_send(socket_t s,void *buf,int len,int flags)

{

 register int slen; /* sent length */

#if WIN

 slen = send(s->h,buf,len,flags);

 if (slen == SOCKET_ERROR)

 {

 wsa_error("send",-1);

 return -1;

 }

#endif

 return slen;

}

/**

**/

int socket_puts(socket_t s,char *str)

{

 char buf[1024];

 strcpy(buf,str);

 strcat(buf,"\n");

 if (socket_send(s,buf,strlen(buf),0) < 0)

 return -1;

 return 0;

}

/**

**/

int socket_gets(socket_t s,char *str)

{

 char buf[1024];

 char *p;

 if (socket_recv(s,buf,sizeof(buf),0) < 0)

 return -1;

 if ((p = memchr(buf,'\n',sizeof(buf))) != NULL)

 {

 if (p > buf && p[-1] == '\r')

Remote Control
Users Guide

6-18

 p--;

 *p = '\0';

 }

 else

 buf[sizeof(buf)-1] = '\0';

 strcpy(str,buf);

 return strlen(str);

}

/**

**/

int main(int argc,char *argv[])

{

 socket_t s;

 struct sockaddr_in saddr;

 struct sockaddr_in *addr_in = (struct sockaddr_in *)&saddr;

 char buffer[1024];

 /* socket (TCP/IP) API initialization: */

 if (socket_setup() < 0)

 return 1;

 /*

 * Connect to the instrument:

 */

 /* set destination IP address and TCP port: */

 memset(addr_in,0,sizeof(struct sockaddr_in));

 addr_in->sin_family = AF_INET;

 addr_in->sin_port = htons(PORT);

 addr_in->sin_addr.s_addr = inet_addr(HOST);

 /* create socket: */

 s = socket_create();

 if (!s)

 return 1;

#if 0

 fprintf(stderr,"socket_connect() ...\n");

#endif

 if (socket_connect(s,(struct sockaddr *)&saddr,sizeof(saddr)) < 0)

 return 1;

#if 0

 fprintf(stderr,"socket_connect(): done\n");

#endif

#if 0

 if (socket_puts(s,"*IDN?") < 0)

 return 1;

 if (socket_gets(s,buffer) < 0)

 return 1;

 puts(buffer);

#endif

 /* Bring the instrument into a default state: */

 socket_puts(s,"*RST");

 Programming Examples
 U, I, P Measurement over RS-232 Interface without VISA Library 6

 6-19

 /* Select three wattmeter configuration: */

 socket_puts(s,"ROUT:SYST \"3W\"");

 /* SYNC source = voltage phase 1: */

 socket_puts(s,"SYNC:SOUR VOLT1");

 /* Set voltage range on voltage channel 1 to 300 V: */

 socket_puts(s,"VOLT1:RANG 300.0");

 /* Set current channel 1 to autorange: */

 socket_puts(s,"CURR1:RANG:AUTO ON");

 /* Set averaging time to 1 second: */

 socket_puts(s,"APER 1.0");

 /* Select U, I, P measurement: */

 socket_puts(s,"FUNC \"VOLT1\",\"CURR1\",\"POW1:ACT\"");

 /* Run continuous measurements: */

 socket_puts(s,"INIT:CONT ON");

 Delay(2.0); /* Wait 2 seconds */

 socket_puts(s,"DATA?"); /* Query the measurement */

 memset(buffer,0,sizeof(buffer)); /* Clear buffer */

 socket_gets(s,buffer); /* Read values */

 puts(buffer); /* Print the value on the screen */

 socket_cleanup();

 return 0;

}

/**

**/

U, I, P Measurement over RS-232 Interface without VISA
Library

This example will configure the instrument to measure power, voltage and current on
three-phase system 3 x 400V/50Hz and reads the measurements.

/*

 * MEASURE U, I, P (wait synchronously)

 *

 * This example will configure the instrument to measure power, voltage

 * and current on three-phase system 3 x 400V/50Hz and reads the

measurements.

 *

 * The time it will take to finish the measurement is 1 s (averaging time).

 * The query DATA? does not wait for the measurement to be completed, so it

 * would return whatever values are available at a moment. The delay of 2

 * seconds gives the instrument enough time to finish the measurement before

 * reading data.

 */

#if WIN32

#define WIN 1

#endif

Remote Control
Users Guide

6-20

#if WIN

#if !defined(_MFC_VER) /* !MFC (!<afx.h>) */

#include <windows.h>

#endif /* !_MFC_VER */

#endif

#include <stdio.h>

/*

 * "\\.\com<num>" in order to support "COM10" and above.

 *

 * More info: MSKB article Q115831:

 *

 * http://support.microsoft.com/default.aspx?scid=kb;EN-US;q115831

 */

#define SIO_PORT "\\\\.\\com1"

#define SIO_BAUDRATE 115200

#define SIO_INPUT_BUFSIZE 4096

#define SIO_OUTPUT_BUFSIZE 4096

#define MAX(a,b) ((a) > (b) ? (a) : (b))

#if WIN

/* serial port handle ('CreateFile("COMx:",...)'): */

typedef HANDLE sio_handle_t;

#endif

typedef unsigned char byte;

typedef struct {

 sio_handle_t handle;

 /*

 * I/O buffer (similar to 'FILE'):

 */

 struct {

 byte *base; /* address of allocated buffer */

 byte *ptr; /* pointer to first available byte in buffer 'base' */

 int size; /* size in bytes of allocated buffer 'base' */

 int cnt; /* current number of bytes available in buffer at 'ptr'

*/

 } buf;

} sio_t;

/**

**/

static void Delay(double seconds)

{

 Sleep((DWORD)(seconds * 1000));

}

/**

**/

static void sio_error(char *func)

 Programming Examples
 U, I, P Measurement over RS-232 Interface without VISA Library 6

 6-21

{

 fprintf(stderr,"%s() failed, error %ld\n",func,GetLastError());

}

/**

**/

static int sio_open(sio_t *sio,char *device)

{

 COMMTIMEOUTS timeouts;

 sio_handle_t handle;

 DCB dcb;

 memset(sio,0,sizeof(*sio));

 handle = CreateFile(

 device, // LPCTSTR lpFileName

 GENERIC_READ | GENERIC_WRITE, // DWORD dwDesiredAccess

 0, // DWORD dwShareMode

 NULL, // LPSECURITY_ATTRIBUTES

lpSecurityAttributes

 OPEN_EXISTING, // DWORD dwCreationDisposition

 0, // DWORD dwFlagsAndAttributes

 NULL // HANDLE hTemplateFile

);

 if (handle == INVALID_HANDLE_VALUE)

 {

 sio_error("CreateFile");

 return -1;

 }

 sio->handle = handle;

 dcb.DCBlength = sizeof(dcb);

 if (!GetCommState(handle,&dcb))

 {

 sio_error("GetCommState");

 return -1;

 }

 /*

 * Baud Rate:

 */

 dcb.BaudRate = SIO_BAUDRATE;

 /*

 * Character Size:

 */

 dcb.ByteSize = 8;

 /*

 * Parity:

 */

 dcb.Parity = NOPARITY;

 dcb.fParity = TRUE;

 /*

Remote Control
Users Guide

6-22

 * Stop Bits:

 */

 dcb.StopBits = ONESTOPBIT;

 /*

 * Hand-shake:

 */

 dcb.fRtsControl = RTS_CONTROL_ENABLE;

 dcb.fOutxCtsFlow = FALSE;

 dcb.fDtrControl = DTR_CONTROL_ENABLE;

 dcb.fOutxDsrFlow = FALSE;

 dcb.fDsrSensitivity = FALSE;

 dcb.fOutX = FALSE;

 dcb.fInX = FALSE;

 dcb.fTXContinueOnXoff = FALSE;

 dcb.fAbortOnError = TRUE;

 if (!SetCommState(handle,&dcb))

 {

 sio_error("SetCommState");

 return -1;

 }

 /*

 * Read timeout: MAXDWORD, 0, 0

 * - read operation is to return immediately with the characters

 * that have already been received, even if no characters have

 * been received (i.e. read operation does not block)

 */

 timeouts.ReadIntervalTimeout = MAXDWORD;

 timeouts.ReadTotalTimeoutMultiplier = 0;

 timeouts.ReadTotalTimeoutConstant = 0;

 /*

 * Write timeout: 0, n

 * - write operation will not block

 */

 timeouts.WriteTotalTimeoutMultiplier = 0;

 timeouts.WriteTotalTimeoutConstant = 0;

 if (!SetCommTimeouts(handle,&timeouts))

 {

 sio_error("SetCommTimeouts");

 return -1;

 }

 /*

 * Set up I/O buffers:

 */

 if (!SetupComm(handle,SIO_INPUT_BUFSIZE,SIO_OUTPUT_BUFSIZE))

 {

 sio_error("SetupComm");

 return -1;

 }

 sio->buf.size = MAX(SIO_INPUT_BUFSIZE,SIO_OUTPUT_BUFSIZE);

 sio->buf.base = malloc(sio->buf.size);

 if (!sio->buf.base)

 Programming Examples
 U, I, P Measurement over RS-232 Interface without VISA Library 6

 6-23

 return -1;

 sio->buf.ptr = sio->buf.base;

 sio->buf.cnt = 0;

 return 0; /* OK */

}

/**

**/

static int sio_close(sio_t *sio)

{

 CloseHandle(sio->handle);

 if (sio->buf.base)

 free(sio->buf.base);

 sio->buf.base = NULL;

 return 0; /* OK */

}

/**

**/

static int sio_read(sio_t *sio,byte *buf,int bufsize)

{

 DWORD l;

 if (!ReadFile(sio->handle,buf,1,&l,NULL))

 {

 sio_error("ReadFile");

 return -1;

 }

 return l;

}

/**

**/

static int sio_write(sio_t *sio,byte *buf,int bufsize)

{

 DWORD l, len;

 for(len = 0; len < (DWORD)bufsize; len += l)

 {

 if (!WriteFile(sio->handle,buf+len,bufsize-len,&l,NULL))

 {

 sio_error("WriteFile");

 return -1;

 }

 }

 return len;

}

/**

**/

static int sio_fillbuf(sio_t *sio)

{

Remote Control
Users Guide

6-24

 register int l;

 l = sio_read(sio,sio->buf.base,sio->buf.size);

 if (l <= 0)

 return l;

#if 0

 fprintf(stderr,"sio_fillbuf(): sio_read(): %d\n",l);

#endif

 sio->buf.cnt = l;

 sio->buf.ptr = sio->buf.base;

 return l;

}

/**

**/

static int sio_getc(sio_t *sio,int *pchar)

{

 int ret;

 if (!sio->buf.cnt && (ret = sio_fillbuf(sio)) <= 0)

 return ret;

 sio->buf.cnt--;

 *pchar = *sio->buf.ptr++;

 return 1; /* OK */

}

/**

**/

static int sio_gets(sio_t *sio,char *str)

{

 register int len;

 int c, ret;

 for(len = 0; ;)

 {

 if ((ret = sio_getc(sio,&c)) < 0)

 return ret;

 if (ret == 0)

 Sleep(10); /* no data on input, don't hog CPU */

 else

 {

 if (c == '\r')

 continue;

 str[len++] = (char)c;

 if (c == '\n')

 break;

 }

 }

 str[len] = '\0'; /* terminate string */

 Programming Examples
 U, I, P Measurement over RS-232 Interface without VISA Library 6

 6-25

 return 0; /* OK */

}

/**

**/

static int sio_puts(sio_t *sio,char *str)

{

 char buf[1024];

 strcpy(buf,str);

 strcat(buf,"\n");

 return sio_write(sio,(byte *)buf,strlen(buf));

}

/**

**/

int main(int argc,char *argv[])

{

 char buffer[1024];

 sio_t sio;

 /*

 * Open connection to the instrument:

 */

 if (sio_open(&sio,SIO_PORT) < 0)

 return 1;

#if 0

 if (sio_puts(&sio,"*IDN?") < 0)

 return 1;

 if (sio_gets(&sio,buffer) < 0)

 return 1;

 puts(buffer);

#endif

#if 1

 /* Bring the instrument into a default state: */

 sio_puts(&sio,"*RST");

#endif

 /* Select three wattmeter configuration: */

 sio_puts(&sio,"ROUT:SYST \"3W\"");

 /* SYNC source = voltage phase 1: */

 sio_puts(&sio,"SYNC:SOUR VOLT1");

 /* Set voltage range on voltage channel 1 to 300 V: */

 sio_puts(&sio,"VOLT1:RANG 300.0");

 /* Set current channel 1 to autorange: */

 sio_puts(&sio,"CURR1:RANG:AUTO ON");

 /* Set averaging time to 1 second: */

 sio_puts(&sio,"APER 1.0");

 /* Select U, I, P measurement: */

 sio_puts(&sio,"FUNC \"VOLT1\",\"CURR1\",\"POW1:ACT\"");

 /* Run continuous measurements: */

 sio_puts(&sio,"INIT:CONT ON");

Remote Control
Users Guide

6-26

 Delay(2.0); /* Wait 2 seconds */

 sio_puts(&sio,"DATA?"); /* Query the measurement */

 memset(buffer,0,sizeof(buffer)); /* Clear buffer */

 sio_gets(&sio,buffer); /* Read values */

 puts(buffer); /* Print the value on the screen */

 sio_close(&sio);

 return 0;

}

/**

**/

U, I, P Measurement over USB (RS-232) Interface without
VISA Library

This example will configure the instrument to measure power, voltage and current on
three-phase system 3 x 400V/50Hz and reads the measurements.

/*

 * MEASURE U, I, P (wait synchronously)

 *

 * This example will configure the instrument to measure power, voltage

 * and current on three-phase system 3 x 400V/50Hz and reads the

measurements.

 *

 * The time it will take to finish the measurement is 1 s (averaging time).

 * The query DATA? does not wait for the measurement to be completed, so it

 * would return whatever values are available at a moment. The delay of 2

 * seconds gives the instrument enough time to finish the measurement before

 * reading data.

 */

#if WIN32

#define WIN 1

#endif

#if WIN

#if !defined(_MFC_VER) /* !MFC (!<afx.h>) */

#include <windows.h>

#endif /* !_MFC_VER */

#endif

#include <stdio.h>

/*

 * "\\.\com<num>" in order to support "COM10" and above.

 *

 * More info: MSKB article Q115831:

 *

 * http://support.microsoft.com/default.aspx?scid=kb;EN-US;q115831

 */

#define SIO_PORT "\\\\.\\com2" /* USB Virtual COM Port */

 Programming Examples
 U, I, P Measurement over USB (RS-232) Interface without VISA Library 6

 6-27

#define SIO_INPUT_BUFSIZE 4096

#define SIO_OUTPUT_BUFSIZE 4096

#define MAX(a,b) ((a) > (b) ? (a) : (b))

#if WIN

/* serial port handle ('CreateFile("COMx:",...)'): */

typedef HANDLE sio_handle_t;

#endif

typedef unsigned char byte;

typedef struct {

 sio_handle_t handle;

 /*

 * I/O buffer (similar to 'FILE'):

 */

 struct {

 byte *base; /* address of allocated buffer */

 byte *ptr; /* pointer to first available byte in buffer 'base' */

 int size; /* size in bytes of allocated buffer 'base' */

 int cnt; /* current number of bytes available in buffer at 'ptr' */

 } buf;

} sio_t;

/**

**/

static void Delay(double seconds)

{

 Sleep((DWORD)(seconds * 1000));

}

/**

**/

static void sio_error(char *func)

{

 fprintf(stderr,"%s() failed, error %ld\n",func,GetLastError());

}

/**

**/

static int sio_open(sio_t *sio,char *device)

{

 COMMTIMEOUTS timeouts;

 sio_handle_t handle;

 DCB dcb;

 memset(sio,0,sizeof(*sio));

 handle = CreateFile(

 device, // LPCTSTR lpFileName

 GENERIC_READ | GENERIC_WRITE, // DWORD dwDesiredAccess

Remote Control
Users Guide

6-28

 0, // DWORD dwShareMode

 NULL, // LPSECURITY_ATTRIBUTES

lpSecurityAttributes

 OPEN_EXISTING, // DWORD dwCreationDisposition

 0, // DWORD dwFlagsAndAttributes

 NULL // HANDLE hTemplateFile

);

 if (handle == INVALID_HANDLE_VALUE)

 {

 sio_error("CreateFile");

 return -1;

 }

 sio->handle = handle;

 dcb.DCBlength = sizeof(dcb);

 if (!GetCommState(handle,&dcb))

 {

 sio_error("GetCommState");

 return -1;

 }

#if 0 /* not needed for USB VCP

 /*

 * Baud Rate:

 */

 dcb.BaudRate = SIO_BAUDRATE;

 /*

 * Character Size:

 */

 dcb.ByteSize = 8;

 /*

 * Parity:

 */

 dcb.Parity = NOPARITY;

 dcb.fParity = TRUE;

 /*

 * Stop Bits:

 */

 dcb.StopBits = ONESTOPBIT;

#endif

 /*

 * Hand-shake:

 */

 dcb.fRtsControl = RTS_CONTROL_ENABLE;

 dcb.fOutxCtsFlow = FALSE;

 dcb.fDtrControl = DTR_CONTROL_ENABLE;

 dcb.fOutxDsrFlow = FALSE;

 dcb.fDsrSensitivity = FALSE;

 dcb.fOutX = FALSE;

 dcb.fInX = FALSE;

 dcb.fTXContinueOnXoff = FALSE;

 Programming Examples
 U, I, P Measurement over USB (RS-232) Interface without VISA Library 6

 6-29

 dcb.fAbortOnError = TRUE;

 if (!SetCommState(handle,&dcb))

 {

 sio_error("SetCommState");

 return -1;

 }

 /*

 * Read timeout: MAXDWORD, 0, 0

 * - read operation is to return immediately with the characters

 * that have already been received, even if no characters have

 * been received (i.e. read operation does not block)

 */

 timeouts.ReadIntervalTimeout = MAXDWORD;

 timeouts.ReadTotalTimeoutMultiplier = 0;

 timeouts.ReadTotalTimeoutConstant = 0;

 /*

 * Write timeout: 0, n

 * - write operation will not block

 */

 timeouts.WriteTotalTimeoutMultiplier = 0;

 timeouts.WriteTotalTimeoutConstant = 0;

 if (!SetCommTimeouts(handle,&timeouts))

 {

 sio_error("SetCommTimeouts");

 return -1;

 }

 /*

 * Set up I/O buffers:

 */

 if (!SetupComm(handle,SIO_INPUT_BUFSIZE,SIO_OUTPUT_BUFSIZE))

 {

 sio_error("SetupComm");

 return -1;

 }

 sio->buf.size = MAX(SIO_INPUT_BUFSIZE,SIO_OUTPUT_BUFSIZE);

 sio->buf.base = malloc(sio->buf.size);

 if (!sio->buf.base)

 return -1;

 sio->buf.ptr = sio->buf.base;

 sio->buf.cnt = 0;

 return 0; /* OK */

}

/**

**/

static int sio_close(sio_t *sio)

{

 CloseHandle(sio->handle);

 if (sio->buf.base)

 free(sio->buf.base);

 sio->buf.base = NULL;

Remote Control
Users Guide

6-30

 return 0; /* OK */

}

/**

**/

static int sio_read(sio_t *sio,byte *buf,int bufsize)

{

 DWORD l;

 if (!ReadFile(sio->handle,buf,1,&l,NULL))

 {

 sio_error("ReadFile");

 return -1;

 }

 return l;

}

/**

**/

static int sio_write(sio_t *sio,byte *buf,int bufsize)

{

 DWORD l, len;

 for(len = 0; len < (DWORD)bufsize; len += l)

 {

 if (!WriteFile(sio->handle,buf+len,bufsize-len,&l,NULL))

 {

 sio_error("WriteFile");

 return -1;

 }

 }

 return len;

}

/**

**/

static int sio_fillbuf(sio_t *sio)

{

 register int l;

 l = sio_read(sio,sio->buf.base,sio->buf.size);

 if (l <= 0)

 return l;

#if 0

 fprintf(stderr,"sio_fillbuf(): sio_read(): %d\n",l);

#endif

 sio->buf.cnt = l;

 sio->buf.ptr = sio->buf.base;

 return l;

}

 Programming Examples
 U, I, P Measurement over USB (RS-232) Interface without VISA Library 6

 6-31

/**

**/

static int sio_getc(sio_t *sio,int *pchar)

{

 int ret;

 if (!sio->buf.cnt && (ret = sio_fillbuf(sio)) <= 0)

 return ret;

 sio->buf.cnt--;

 *pchar = *sio->buf.ptr++;

 return 1; /* OK */

}

/**

**/

static int sio_gets(sio_t *sio,char *str)

{

 register int len;

 int c, ret;

 for(len = 0; ;)

 {

 if ((ret = sio_getc(sio,&c)) < 0)

 return ret;

 if (ret == 0)

 Sleep(10); /* no data on input, don't hog CPU */

 else

 {

 if (c == '\r')

 continue;

 str[len++] = (char)c;

 if (c == '\n')

 break;

 }

 }

 str[len] = '\0'; /* terminate string */

 return 0; /* OK */

}

/**

**/

static int sio_puts(sio_t *sio,char *str)

{

 char buf[1024];

 strcpy(buf,str);

 strcat(buf,"\n");

 return sio_write(sio,(byte *)buf,strlen(buf));

}

Remote Control
Users Guide

6-32

/**

**/

int main(int argc,char *argv[])

{

 char buffer[1024];

 sio_t sio;

 /*

 * Open connection to the instrument:

 */

 if (sio_open(&sio,SIO_PORT) < 0)

 return 1;

#if 0

 if (sio_puts(&sio,"*IDN?") < 0)

 return 1;

 if (sio_gets(&sio,buffer) < 0)

 return 1;

 puts(buffer);

#endif

#if 1

 /* Bring the instrument into a default state: */

 sio_puts(&sio,"*RST");

#endif

 /* Select three wattmeter configuration: */

 sio_puts(&sio,"ROUT:SYST \"3W\"");

 /* SYNC source = voltage phase 1: */

 sio_puts(&sio,"SYNC:SOUR VOLT1");

 /* Set voltage range on voltage channel 1 to 300 V: */

 sio_puts(&sio,"VOLT1:RANG 300.0");

 /* Set current channel 1 to autorange: */

 sio_puts(&sio,"CURR1:RANG:AUTO ON");

 /* Set averaging time to 1 second: */

 sio_puts(&sio,"APER 1.0");

 /* Select U, I, P measurement: */

 sio_puts(&sio,"FUNC \"VOLT1\",\"CURR1\",\"POW1:ACT\"");

 /* Run continuous measurements: */

 sio_puts(&sio,"INIT:CONT ON");

 Delay(2.0); /* Wait 2 seconds */

 sio_puts(&sio,"DATA?"); /* Query the measurement */

 memset(buffer,0,sizeof(buffer)); /* Clear buffer */

 sio_gets(&sio,buffer); /* Read values */

 puts(buffer); /* Print the value on the screen */

 sio_close(&sio);

 return 0;

}

/**

**/

	Remote Control For NORMA 4000/5000 Power Analyzer
	LIMITED WARRANTY AND LIMITATION OF LIABILITY
	Table of Contents
	List of Tables
	List of Figures

	1. Remote Control Basics
	Introduction
	Getting Started
	Assumptions
	Procedure

	Switchover to Remote Control
	Indications during Remote Control
	Return to Manual Operation
	Manually
	Remotely

	Commands and Instrument Responses
	Commands
	Device Responses

	Structure and Syntax of Device Messages
	Introduction to SCPI
	Structure of Commands
	Common Commands
	Device-Specific Commands
	Hierarchy
	Optional Key Word
	Long and Short Form
	Parameters
	Numerical Suffix

	Structure of Command Lines
	Responses to Queries
	Parameters
	Numerical values
	Boolean Parameters
	Text
	Strings
	Block data

	Overview of Syntax Elements

	Instrument Model and Command Processing
	Input Unit
	Command Recognition
	Data Set and Instrument Hardware
	Status Reporting System
	Output Unit
	Command Sequence and Command Synchronization

	2. Status Reporting System
	Introduction
	Structure of an SCPI Status Register
	Overview of the Status Registers
	Description of Status Registers
	Status Byte (STB) and Service Request Enable Register (SRE)
	Event Status Register (ESR) and Event Status Enable Register (ESE)

	Application of the Status Reporting System
	Service Request, Making Use of the Hierarchy Structure (GPIB only)
	Serial Poll (GPIB only)
	Query by Means of Commands
	Error-Queue Query
	Resetting Values of the Status Reporting System

	3. Hardware Interfaces
	Introduction
	IEC/IEEE-Bus Interface (GPIB) - optional
	Characteristics of Interface
	Bus Lines
	Interface Functions
	Interface Messages
	Universal Commands
	Addressed Commands

	RS-232-C Interface
	Characteristics of Interface
	Signal Lines
	Transmission Parameters
	Interface Functions
	Handshake

	IEEE 802.3 (Ethernet) Œ Optional
	Characteristics of Interface
	Signal Lines
	Connection Settings

	Universal Serial Bus (USB) - optional
	Characteristics of Interface
	Connection Settings

	4. Remote Control - Description of Commands
	Introduction
	Common Commands
	Measurement Functions
	<function>
	ABORt Subsystem
	CALCulate Subsystem
	DISPlay Subsystem
	FORMat Subsystem

	Hardcopy Subsystem
	INITiate Subsystem
	INPut Subsystem
	OUTPut Subsystem

	ROUTe Subsystem
	SENSe Subsystem
	SENSe2 Subsystem (Option Process Interface)
	SOURce Subsystem (Option Process Interface)
	SYNC Subsystem
	TRIGger Subsystem
	SYSTem Subsystem
	STATus Subsystem

	List of Commands Grouped By Subsystems

	5. Error Messages
	Introduction
	Command Error
	Execution Error
	Device-Specific Error
	Query Error

	6. Programming Examples
	Introduction
	Initialize Interface
	Initialize Instrument
	Perform Simple Power Measurement
	U, I, P Measurement
	Continuous Power Measurement
	U, I, P Measurement over Ethernet Interface without VISA Library
	U, I, P Measurement over RS-232 Interface without VISA Library
	U, I, P Measurement over USB (RS-232) Interface without VISA Library

